File size: 5,476 Bytes
d53eaf3
 
 
 
 
4e4b258
d53eaf3
4e4b258
14ab4d5
d53eaf3
 
 
 
 
 
 
 
 
 
3f276e9
 
cd89d3c
 
 
 
 
 
 
 
 
 
461a9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb29d1
461a9d1
5eb29d1
 
 
 
 
d53eaf3
 
3f276e9
d53eaf3
 
 
 
f7b9877
d53eaf3
 
 
f7b9877
 
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
 
ed80800
d53eaf3
 
 
3f276e9
 
 
d53eaf3
3f276e9
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
3f276e9
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f276e9
 
d53eaf3
 
cd89d3c
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
cd89d3c
d53eaf3
 
 
 
 
 
 
 
 
cd89d3c
d53eaf3
 
 
cd89d3c
d53eaf3
 
 
 
 
 
 
 
 
cd89d3c
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89d3c
d53eaf3
 
 
 
 
 
 
 
ed80800
 
 
461a9d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: null
pretty_name: Tweets Hate Speech Detection
train-eval-index:
- config: default
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
  col_mapping:
    tweet: text
    label: target
    metrics:
    - type: accuracy
      name: Accuracy
    - type: f1
      name: F1 binary
      args:
        average: binary
    - type: precision
      name: Precision macro
      args:
        average: macro
    - type: precision
      name: Precision micro
      args:
        average: micro
    - type: precision
      name: Precision weighted
      args:
        average: weighted
    - type: recall
      name: Recall macro
      args:
        average: macro
    - type: recall
      name: Recall micro
      args:
        average: micro
    - type: recall
      name: Recall weighted
      args:
        average: weighted
dataset_info:
  features:
  - name: label
    dtype:
      class_label:
        names:
          0: no-hate-speech
          1: hate-speech
  - name: tweet
    dtype: string
  splits:
  - name: train
    num_bytes: 3191888
    num_examples: 31962
  - name: test
    num_bytes: 1711606
    num_examples: 17197
  download_size: 4738708
  dataset_size: 4903494
---

# Dataset Card for Tweets Hate Speech Detection

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Home](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis)
- **Repository:** [Repo](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/train_tweet.csv)
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** [Darshan Gandhi](darshangandhi1151@gmail.com)

### Dataset Summary

The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets.

Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages
The tweets are primarily in English Language.

## Dataset Structure

### Data Instances

The dataset contains a label denoting is the tweet a hate speech or not

```
{'label': 0,  # not a hate speech
 'tweet': ' @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction.   #run'}
```


### Data Fields

* label : 1 - it is a hate speech, 0 - not a hate speech.
* tweet: content of the tweet as a string.

### Data Splits

The data contains training data with :31962 entries

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Crowdsourced from tweets of users

#### Who are the source language producers?

Cwodsourced from twitter

### Annotations

#### Annotation process

The data has been precprocessed and a model has been trained to assign the relevant label to the tweet

#### Who are the annotators?

The data has been provided by Roshan Sharma

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

With the help of this dataset, one can understand more about the human sentiments and also analye the situations when a particular person intends to make use of   hatred/racist comments

### Discussion of Biases

The data could be cleaned up further for additional purposes such as applying a better feature extraction techniques


[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Roshan Sharma

### Licensing Information

[Information](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/LICENSE)

### Citation Information

[Citation](https://github.com/sharmaroshan/Twitter-Sentiment-Analysis/blob/master/CONTRIBUTING.md)

### Contributions

Thanks to [@darshan-gandhi](https://github.com/darshan-gandhi) for adding this dataset.