File size: 3,270 Bytes
d53eaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a72eda
d53eaf3
 
 
 
 
 
 
 
5eb29d1
 
d53eaf3
 
 
 
 
 
 
 
 
5eb29d1
 
 
 
d53eaf3
 
 
3f276e9
d53eaf3
 
 
 
 
 
 
 
 
 
5eb29d1
d53eaf3
6a72eda
d53eaf3
 
 
5eb29d1
d53eaf3
5eb29d1
 
d53eaf3
 
 
 
 
5eb29d1
d53eaf3
 
 
 
5eb29d1
 
d53eaf3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Detecing which tweets showcase hate or racist remarks."""


import csv

import datasets
from datasets.tasks import TextClassification


_DESCRIPTION = """\
The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets.

Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset.
"""

_HOMEPAGE = "https://github.com/sharmaroshan/Twitter-Sentiment-Analysis"

_CITATION = """\
@InProceedings{Z
Roshan Sharma:dataset,
title = {Sentimental Analysis of Tweets for Detecting Hate/Racist Speeches},
authors={Roshan Sharma},
year={2018}
}
"""

_URL = {
    "train": "https://raw.githubusercontent.com/sharmaroshan/Twitter-Sentiment-Analysis/master/train_tweet.csv",
    "test": "https://raw.githubusercontent.com/sharmaroshan/Twitter-Sentiment-Analysis/master/test_tweets.csv",
}


class TweetsHateSpeechDetection(datasets.GeneratorBasedBuilder):
    """Detecting which tweets showcase hate or racist remarks."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "label": datasets.ClassLabel(names=["no-hate-speech", "hate-speech"]),
                    "tweet": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[TextClassification(text_column="tweet", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        path = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": path["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path["test"]}),
        ]

    def _generate_examples(self, filepath):
        """Generate Tweet examples."""
        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.DictReader(
                csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
            )
            for id_, row in enumerate(csv_reader):
                yield id_, {
                    "label": int(row.setdefault("label", -1)),
                    "tweet": row["tweet"],
                }