Datasets:
File size: 11,053 Bytes
cb715ae fbbd8c2 cb715ae fbbd8c2 cb715ae bfc4da1 cb715ae e1fc14b cb715ae fbbd8c2 cb715ae fbbd8c2 cb715ae fbbd8c2 cb715ae fbbd8c2 cb715ae 357d568 fde171d 357d568 fbbd8c2 357d568 fbbd8c2 357d568 fbbd8c2 357d568 fbbd8c2 357d568 fbbd8c2 357d568 fbbd8c2 357d568 fbbd8c2 357d568 fbbd8c2 cb715ae fbbd8c2 cb715ae fbbd8c2 cb715ae 357d568 bfc4da1 357d568 fbbd8c2 cb715ae fbbd8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""
import json
import datasets
import traceback
import os
import gzip
from typing import List
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
RedPajama V2: an Open Dataset for Training Large Language Models
"""
_URL_BASE = 'https://data.together.xyz/redpajama-data-v2/v1.0.0'
_LANGUAGES = ("en", "de", "fr", "es", "it")
_LISTINGS_PATTERN = "listings/{language}-{snapshot}-{partition}.txt"
_CC_SNAPSHOT_IDS = (
"2014-15",
"2014-23",
"2014-35",
"2014-41",
"2014-42",
"2014-49",
"2014-52",
"2015-14",
"2015-22",
"2015-27",
"2015-32",
"2015-35",
"2015-40",
"2015-48",
"2016-07",
"2016-18",
"2016-22",
"2016-26",
"2016-30",
"2016-36",
"2016-40",
"2016-44",
"2016-50",
"2017-04",
"2017-09",
"2017-17",
"2017-22",
"2017-26",
"2017-30",
"2017-34",
"2017-39",
"2017-43",
"2017-47",
"2017-51",
"2018-05",
"2018-09",
"2018-13",
"2018-17",
"2018-22",
"2018-26",
"2018-30",
"2018-34",
"2018-39",
"2018-43",
"2018-47",
"2018-51",
"2019-04",
"2019-09",
"2019-13",
"2019-18",
"2019-22",
"2019-26",
"2019-30",
"2019-35",
"2019-39",
"2019-43",
"2019-47",
"2019-51",
"2020-05",
"2020-10",
"2020-16",
"2020-24",
"2020-29",
"2020-34",
"2020-40",
"2020-45",
"2020-50",
"2021-04",
"2021-10",
"2021-17",
"2021-21",
"2021-25",
"2021-31",
"2021-39",
"2021-43",
"2021-49",
"2022-05",
"2022-21",
"2022-27",
"2022-33",
"2022-40",
"2022-49",
"2023-06",
"2023-14"
)
class RedPajamaDataV2Config(datasets.BuilderConfig):
"""BuilderConfig for RedPajama."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for RedPajama.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RedPajamaDataV2Config, self).__init__(**kwargs)
self.partition: str = kwargs.pop("partition", "all")
self.snapshots: List[str] = kwargs.pop("snapshots", _CC_SNAPSHOT_IDS)
self.languages: List[str] = kwargs.pop("languages", _LANGUAGES)
class RedPajamaV2(datasets.GeneratorBasedBuilder):
""" RedPajama V2: Quality annotated Web Text Documents. """
BUILDER_CONFIGS = [
RedPajamaDataV2Config(
name='_sample',
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
),
# this one is just an alias for the sample
RedPajamaDataV2Config(
name='sample',
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
),
RedPajamaDataV2Config(
name='default',
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"raw_content": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"meta": datasets.Value("string"),
"quality_signals": datasets.Value("string")
}
),
supervised_keys=None,
)
def _split_generators_sample(self, dl_manager):
# fetch documents
sample_listings = dl_manager.download_and_extract(
"sample/sample_listings.txt"
)
with open(sample_listings, "r") as fd:
listings = [line.strip() for line in fd]
# fetch documents
documents_files = dl_manager.download({
"head_middle": [
f"sample/documents/{lst}.json.gz" for lst in listings
]
})
# fetch quality signals
quality_signals_files = dl_manager.download({
"head_middle": [
f"sample/quality_signals/{lst}.signals.json.gz"
for lst in listings
]
})
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"listings_ids": {"head_middle": listings},
"documents_files": documents_files,
"quality_signals_files": quality_signals_files
}
)
]
def _split_generators_full(self, dl_manager):
snapshots = getattr(self.config, 'snapshots', _CC_SNAPSHOT_IDS)
languages = getattr(self.config, 'languages', _LANGUAGES)
partition = getattr(self.config, 'partition', 'all')
partitions = {
"all": ["head_middle", "tail"]
}.get(partition, [partition])
# nested structure: partition -> urls
listings_files_urls = {}
for part in partitions:
listings_files_urls[part] = []
for snapshot_id in snapshots:
for lang in languages:
listings_files_urls[part].append(
_LISTINGS_PATTERN.format(
language=lang,
snapshot=snapshot_id,
partition=part,
)
)
# fetch listings from hub
listings_files = dl_manager.download_and_extract(listings_files_urls)
# fetch listings
listings_ids = {}
for part, part_listings_files in listings_files.items():
listings_ids[part] = []
for listings_file in part_listings_files:
with open(listings_file, encoding="utf-8") as f:
listings_ids[part].extend([
line.strip() for line in f
])
# build urls pointing to documents and quality signals
document_urls = {}
quality_signals_urls = {}
for part, part_listings_ids in listings_ids.items():
document_urls[part] = []
quality_signals_urls[part] = []
for lst_id in part_listings_ids:
document_urls[part].append(
os.path.join(_URL_BASE, f"documents/{lst_id}.json.gz")
)
if part != "head_middle":
continue
quality_signals_urls[part].append(
os.path.join(
_URL_BASE, f"quality_signals/{lst_id}.signals.json.gz"
)
)
documents_files = dl_manager.download(document_urls)
quality_signals_files = dl_manager.download(quality_signals_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"listings_ids": listings_ids,
"documents_files": documents_files,
"quality_signals_files": quality_signals_files
}
)
]
def _split_generators(self, dl_manager):
if self.config.name.endswith("sample"):
return self._split_generators_sample(dl_manager)
return self._split_generators_full(dl_manager)
def _generate_examples(
self, listings_ids, documents_files, quality_signals_files
):
key = 0
for part in documents_files.keys():
part_docs_files = documents_files[part]
part_qs_files = quality_signals_files[part]
part_listings_ids = listings_ids[part]
if len(part_qs_files) == 0:
for sample in self._handle_tail_partition(
part, part_docs_files, part_listings_ids
):
yield key, sample
key += 1
continue
for sample in self._handle_head_middle_partition(
part, part_docs_files, part_qs_files, part_listings_ids
):
yield key, sample
key += 1
def _handle_tail_partition(self, part, docs_files, listings_ids):
for doc_file, listing_id in zip(docs_files, listings_ids):
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
for row, doc in enumerate(df):
doc_id = f"{listing_id}.json.gz/{row}"
try:
yield self.handle_record(part, doc_id, doc, None)
except Exception as e:
print(f'doc_file: {doc_file}')
print(f'row: {row}')
traceback.print_exc()
raise e
def _handle_head_middle_partition(
self, part, docs_files, qs_files, listings_ids
):
assert len(docs_files) == len(qs_files)
listings_ids = listings_ids[:len(docs_files)]
for doc_file, qs_file, listings_id in zip(
docs_files, qs_files, listings_ids
):
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
for row, (doc, qs) in enumerate(zip(df, qf)):
doc_id = f"{listings_id}.json.gz/{row}"
try:
yield self.handle_record(part, doc_id, doc, qs)
except Exception as e:
print(f'doc_file: {doc_file}')
print(f'qs_file: {qs_file}')
print(f'row: {row}')
traceback.print_exc()
raise e
@staticmethod
def handle_record(part, doc_id, doc, qs):
doc = json.loads(doc)
qs = json.loads(qs) if qs is not None else {}
meta = {
"url": doc["url"],
"partition": part,
"language": doc["language"],
"source_domain": doc["source_domain"],
"date_download": doc["date_download"],
"digest": doc["digest"],
}
quality_signals = json.dumps(qs.get("quality_signals", {}))
return {
"raw_content": doc["raw_content"],
"doc_id": doc_id,
"meta": json.dumps(meta),
"quality_signals": quality_signals,
}
|