File size: 5,667 Bytes
be7b043 7cfef3d be7b043 234a0ea be7b043 7cfef3d be7b043 7cfef3d dc62863 7cfef3d dc62863 7cfef3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RedPajama: An Open-Source, Clean-Room 1.2 Trillion Token Dataset."""
import json
import datasets
import traceback
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
RedPajama is a clean-room, fully open-source implementation of the LLaMa dataset.
"""
_URL_LISTS = {
"arxiv": "urls/arxiv.txt",
"book": "urls/book.txt",
"c4": "urls/c4.txt",
"common_crawl": "urls/common_crawl.txt",
"github": "urls/github.txt",
"stackexchange": "urls/stackexchange.txt",
"wikipedia": "urls/wikipedia.txt",
}
class RedPajama1TConfig(datasets.BuilderConfig):
"""BuilderConfig for RedPajama sample."""
def __init__(self, *args, subsets, **kwargs):
"""BuilderConfig for RedPajama.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RedPajama1TConfig, self).__init__(**kwargs)
self.subsets = subsets
class RedPajama1T(datasets.GeneratorBasedBuilder):
"""RedPajama: Reproducing the LLaMA training dataset of over 1.2 trillion tokens. Version 1.0.0."""
BUILDER_CONFIGS = [
RedPajama1TConfig(
subsets = list(_URL_LISTS.keys()),
name="plain_text",
version=datasets.Version("1.0.0", ""),
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"meta": datasets.Value("string"),
"red_pajama_subset": datasets.Value("string"),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
url_lists = dl_manager.download_and_extract({
subset: _URL_LISTS[subset] for subset in self.config.subsets
})
urls = {}
for subset, url_list in url_lists.items():
with open(url_list, encoding="utf-8") as f:
urls[subset] = [line.strip() for line in f][:1]
downloaded_files = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs = {
"files": {
subset: downloaded_files[subset]
for subset in self.config.subsets
}
}
)
]
def _generate_examples(self, files):
"""This function returns the examples in the raw (text) form."""
key = 0
for subset in files:
if subset == "common_crawl":
import zstandard as zstd
for path in files[subset]:
with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f:
for i, row in enumerate(f):
try:
data = json.loads(row)
text = data["text"]
del data["text"]
yield key, {
"text": text,
"meta": json.dumps(data),
"red_pajama_subset": subset,
}
key += 1
except Exception as e:
print(f'Subset: {subset}')
print(f'Path: {path}')
print(f'Row: {row}')
traceback.print_exc()
raise e
else:
for path in files[subset]:
with open(path, encoding="utf-8") as f:
for i, row in enumerate(f):
try:
data = json.loads(row)
if "meta" not in data:
text = data["text"]
del data["text"]
yield key, {
"text": text,
"meta": json.dumps(data),
"red_pajama_subset": subset,
}
else:
yield key, {
"text": data["text"],
"meta": data["meta"],
"red_pajama_subset": subset,
}
key += 1
except Exception as e:
print(f'Subset: {subset}')
print(f'Path: {path}')
print(f'Row: {row}')
traceback.print_exc()
raise e
|