Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Sub-tasks:
document-retrieval
Languages:
code
Size:
100K - 1M
ArXiv:
License:
File size: 5,452 Bytes
f2f8fe4 90f6a10 f2f8fe4 e6d80b1 23c05e6 e6d80b1 05a6ce9 f2f8fe4 23c05e6 f2f8fe4 23c05e6 f2f8fe4 23c05e6 f2f8fe4 23c05e6 f2f8fe4 c5199a7 f2f8fe4 1c26d47 f2f8fe4 90f6a10 f2f8fe4 23c05e6 4e4ab43 23c05e6 0260143 23c05e6 4e4ab43 23c05e6 f2f8fe4 90f6a10 4e4ab43 23c05e6 4e4ab43 f2f8fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems"""
import gzip
import pickle
import textwrap
import datasets
_CITATION = """\
@misc{liu2023repobench,
title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems},
author={Tianyang Liu and Canwen Xu and Julian McAuley},
year={2023},
eprint={2306.03091},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
RepoBench is a dataset that benchmarks repository-level code auto-completion systems.
RepoBench-R denotes RepoBench for Retrieval, which is a sub-task of RepoBench,
aiming to evaluate the ability of code auto-completion systems to retrieve
relevant code snippets for next-line code completion.
"""
_HOMEPAGE = "https://github.com/Leolty/repobench"
_LICENSE = "Apache License 2.0"
_URLs = {
"java_cff": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/java_cff.gz",
"java_cfr": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/java_cfr.gz",
"python_cff": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/python_cff.gz",
"python_cfr": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/python_cfr.gz"
}
class RepoBenchR(datasets.GeneratorBasedBuilder):
"""RepoBench"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="python_cff",
description=textwrap.dedent(
"""
cff: cross_file_first -> mask the the line that a cross-file module is first used
"""
)
),
datasets.BuilderConfig(
name="python_cfr",
description=textwrap.dedent(
"""
cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
"""
)
),
datasets.BuilderConfig(
name="java_cff",
description=textwrap.dedent(
"""
cff: cross_file_first -> mask the the line that a cross-file module is first used
"""
)
),
datasets.BuilderConfig(
name="java_cfr",
description=textwrap.dedent(
"""
cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
"""
)
)
]
def _info(self):
features = datasets.Features(
{
"repo_name": datasets.Value("string"),
"file_path": datasets.Value("string"),
"context": [datasets.Value("string")],
"import_statement": datasets.Value("string"),
"code": datasets.Value("string"),
"next_line": datasets.Value("string"),
"gold_snippet_index": datasets.Value("int32")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
config_urls = _URLs[self.config.name]
data_dir = dl_manager.download(config_urls)
return [
datasets.SplitGenerator(
name=datasets.Split("train_easy"),
gen_kwargs={"data_dir": data_dir, "split": "train_easy"},
),
datasets.SplitGenerator(
name=datasets.Split("train_hard"),
gen_kwargs={"data_dir": data_dir, "split": "train_hard"},
),
datasets.SplitGenerator(
name=datasets.Split("test_easy"),
gen_kwargs={"data_dir": data_dir, "split": "test_easy"},
),
datasets.SplitGenerator(
name=datasets.Split("test_hard"),
gen_kwargs={"data_dir": data_dir, "split": "test_hard"},
)
]
def _generate_examples(self, data_dir, split):
""" Yields examples. """
with gzip.open(data_dir, "rb") as f:
data = pickle.load(f)
subset, level = split.split("_")
for i, example in enumerate(data[subset][level]):
yield i, {
"repo_name": example["repo_name"],
"file_path": example["file_path"],
"context": example["context"],
"import_statement": example["import_statement"],
"code": example["code"],
"next_line": example["next_line"],
"gold_snippet_index": example["golden_snippet_index"]
}
|