Datasets:

Modalities:
Text
Languages:
code
ArXiv:
Libraries:
Datasets
License:
File size: 5,452 Bytes
f2f8fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90f6a10
f2f8fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d80b1
23c05e6
 
 
 
e6d80b1
 
05a6ce9
f2f8fe4
 
 
 
 
 
23c05e6
f2f8fe4
 
 
 
 
 
 
23c05e6
f2f8fe4
 
 
 
 
 
 
23c05e6
f2f8fe4
 
 
 
 
 
 
23c05e6
f2f8fe4
 
 
 
 
 
 
 
 
 
 
c5199a7
f2f8fe4
1c26d47
f2f8fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90f6a10
f2f8fe4
 
 
23c05e6
 
4e4ab43
 
 
23c05e6
0260143
 
23c05e6
 
4e4ab43
 
23c05e6
 
f2f8fe4
 
 
 
 
90f6a10
 
4e4ab43
23c05e6
4e4ab43
 
 
 
 
 
 
 
 
 
 
f2f8fe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems"""

import gzip
import pickle
import textwrap
import datasets

_CITATION = """\
@misc{liu2023repobench,
      title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems}, 
      author={Tianyang Liu and Canwen Xu and Julian McAuley},
      year={2023},
      eprint={2306.03091},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
RepoBench is a dataset that benchmarks repository-level code auto-completion systems.

RepoBench-R denotes RepoBench for Retrieval, which is a sub-task of RepoBench, 
aiming to evaluate the ability of code auto-completion systems to retrieve 
relevant code snippets for next-line code completion.
"""

_HOMEPAGE = "https://github.com/Leolty/repobench"

_LICENSE = "Apache License 2.0"

_URLs = {
    "java_cff": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/java_cff.gz",
    "java_cfr": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/java_cfr.gz",
    "python_cff": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/python_cff.gz",
    "python_cfr": "https://huggingface.co/datasets/tianyang/repobench-r/resolve/main/data/python_cfr.gz"
}

class RepoBenchR(datasets.GeneratorBasedBuilder):
    """RepoBench"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="python_cff",
            description=textwrap.dedent(
                """
                cff: cross_file_first -> mask the the line that a cross-file module is first used
                """
            )
        ),
        datasets.BuilderConfig(
            name="python_cfr",
            description=textwrap.dedent(
                """
                cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
                """
            )
        ),
        datasets.BuilderConfig(
            name="java_cff",
            description=textwrap.dedent(
                """
                cff: cross_file_first -> mask the the line that a cross-file module is first used
                """
            )
        ),
        datasets.BuilderConfig(
            name="java_cfr",
            description=textwrap.dedent(
                """
                cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
                """
            )
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "repo_name": datasets.Value("string"),
                "file_path": datasets.Value("string"),
                "context": [datasets.Value("string")],
                "import_statement": datasets.Value("string"),
                "code": datasets.Value("string"),
                "next_line": datasets.Value("string"),
                "gold_snippet_index": datasets.Value("int32")
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        config_urls = _URLs[self.config.name]
        data_dir = dl_manager.download(config_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split("train_easy"),
                gen_kwargs={"data_dir": data_dir, "split": "train_easy"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("train_hard"),
                gen_kwargs={"data_dir": data_dir, "split": "train_hard"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_easy"),
                gen_kwargs={"data_dir": data_dir, "split": "test_easy"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_hard"),
                gen_kwargs={"data_dir": data_dir, "split": "test_hard"},
            )
        ]

    def _generate_examples(self, data_dir, split):
        """ Yields examples. """
        with gzip.open(data_dir, "rb") as f:
            data = pickle.load(f)
        
        subset, level = split.split("_")

        for i, example in enumerate(data[subset][level]):
            yield i, {
                "repo_name": example["repo_name"],
                "file_path": example["file_path"],
                "context": example["context"],
                "import_statement": example["import_statement"],
                "code": example["code"],
                "next_line": example["next_line"],
                "gold_snippet_index": example["golden_snippet_index"]
            }