Datasets:

Modalities:
Text
ArXiv:
Tags:
code
Libraries:
Datasets
License:
File size: 6,271 Bytes
5b9f5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac9d7c
 
 
 
 
 
5b9f5fd
 
c76e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cde49
5b9f5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf4fa5
5b9f5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems"""

import gzip
import pickle
import textwrap
import datasets

_CITATION = """\
@misc{liu2023repobench,
      title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems}, 
      author={Tianyang Liu and Canwen Xu and Julian McAuley},
      year={2023},
      eprint={2306.03091},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
RepoBench is a dataset that benchmarks repository-level code auto-completion systems.

RepoBench-C denotes RepoBench for code completion, 
which is subtask of RepoBench for next-line code prediction given both cross-file and in-file context.
"""

_HOMEPAGE = "https://github.com/Leolty/repobench"

_LICENSE = "Apache License 2.0"

_URLs = {
    "python_cff": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/cross_file_first.gz",
    "python_cfr": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/cross_file_random.gz",
    "python_if": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/in_file.gz",
    "java_cff": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/cross_file_first.gz",
    "java_cfr": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/cross_file_random.gz",
    "java_if": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/in_file.gz"
}


def construct_prompt(data_point:dict, language:str):

    if language == "python":
        path = f"# Path: {data_point['file_path']}"
    
    elif language == "java":
        path = f"// Path: {data_point['file_path']}"

    prompt = f"""{data_point['context']}
{path}
{data_point['import_statement']}

{data_point['code']}"""

    return prompt

class RepoBenchC(datasets.GeneratorBasedBuilder):
    """RepoBench"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="python_cff",
            description=textwrap.dedent(
                """
                cff: cross_file_first -> mask the the line that a cross-file module is first used
                """
            )
        ),
        datasets.BuilderConfig(
            name="python_cfr",
            description=textwrap.dedent(
                """
                cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
                """
            )
        ),
        datasets.BuilderConfig(
            name="python_if",
            description=textwrap.dedent(
                """
                if: in_file -> mask a random line with no cross-file module
                """
            )
        ),
        datasets.BuilderConfig(
            name="java_cff",
            description=textwrap.dedent(
                """
                cff: cross_file_first -> mask the the line that a cross-file module is first used
                """
            )
        ),
        datasets.BuilderConfig(
            name="java_cfr",
            description=textwrap.dedent(
                """
                cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
                """
            )
        ),
        datasets.BuilderConfig(
            name="java_if",
            description=textwrap.dedent(
                """
                if: in_file -> mask a random line with no cross-file module
                """
            )
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "repo_name": datasets.Value("string"),
                "file_path": datasets.Value("string"),
                "context": datasets.Value("string"),
                "import_statement": datasets.Value("string"),
                "code": datasets.Value("string"),
                "prompt": datasets.Value("string"),
                "next_line": datasets.Value("string")
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        config_urls = _URLs[self.config.name]
        data_dir = dl_manager.download(config_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split("train"),
                gen_kwargs={"data_dir": data_dir, "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("dev"),
                gen_kwargs={"data_dir": data_dir, "split": "dev"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test"),
                gen_kwargs={"data_dir": data_dir, "split": "test"},
            )
        ]

    def _generate_examples(self, data_dir, split):
        """ Yields examples. """
        with gzip.open(data_dir, "rb") as f:
            data = pickle.load(f)

        for i, example in enumerate(data[split]):

            prompt = construct_prompt(example, self.config.name.split("_")[0])

            yield i, {
                "repo_name": example["repo_name"],
                "file_path": example["file_path"],
                "context": example["context"],
                "import_statement": example["import_statement"],
                "code": example["code"],
                "prompt": prompt,
                "next_line": example["next_line"]
            }