Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
document-retrieval
Size:
100K - 1M
ArXiv:
Tags:
code
License:
File size: 6,271 Bytes
5b9f5fd cac9d7c 5b9f5fd c76e6d7 c8cde49 5b9f5fd 9bf4fa5 5b9f5fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems"""
import gzip
import pickle
import textwrap
import datasets
_CITATION = """\
@misc{liu2023repobench,
title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems},
author={Tianyang Liu and Canwen Xu and Julian McAuley},
year={2023},
eprint={2306.03091},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
RepoBench is a dataset that benchmarks repository-level code auto-completion systems.
RepoBench-C denotes RepoBench for code completion,
which is subtask of RepoBench for next-line code prediction given both cross-file and in-file context.
"""
_HOMEPAGE = "https://github.com/Leolty/repobench"
_LICENSE = "Apache License 2.0"
_URLs = {
"python_cff": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/cross_file_first.gz",
"python_cfr": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/cross_file_random.gz",
"python_if": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/python/in_file.gz",
"java_cff": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/cross_file_first.gz",
"java_cfr": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/cross_file_random.gz",
"java_if": "https://raw.githubusercontent.com/Leolty/repobench/main/data/completion/java/in_file.gz"
}
def construct_prompt(data_point:dict, language:str):
if language == "python":
path = f"# Path: {data_point['file_path']}"
elif language == "java":
path = f"// Path: {data_point['file_path']}"
prompt = f"""{data_point['context']}
{path}
{data_point['import_statement']}
{data_point['code']}"""
return prompt
class RepoBenchC(datasets.GeneratorBasedBuilder):
"""RepoBench"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="python_cff",
description=textwrap.dedent(
"""
cff: cross_file_first -> mask the the line that a cross-file module is first used
"""
)
),
datasets.BuilderConfig(
name="python_cfr",
description=textwrap.dedent(
"""
cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
"""
)
),
datasets.BuilderConfig(
name="python_if",
description=textwrap.dedent(
"""
if: in_file -> mask a random line with no cross-file module
"""
)
),
datasets.BuilderConfig(
name="java_cff",
description=textwrap.dedent(
"""
cff: cross_file_first -> mask the the line that a cross-file module is first used
"""
)
),
datasets.BuilderConfig(
name="java_cfr",
description=textwrap.dedent(
"""
cfr: cross_file_random -> mask a random line that a cross-file module is used (not the first time)
"""
)
),
datasets.BuilderConfig(
name="java_if",
description=textwrap.dedent(
"""
if: in_file -> mask a random line with no cross-file module
"""
)
)
]
def _info(self):
features = datasets.Features(
{
"repo_name": datasets.Value("string"),
"file_path": datasets.Value("string"),
"context": datasets.Value("string"),
"import_statement": datasets.Value("string"),
"code": datasets.Value("string"),
"prompt": datasets.Value("string"),
"next_line": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
config_urls = _URLs[self.config.name]
data_dir = dl_manager.download(config_urls)
return [
datasets.SplitGenerator(
name=datasets.Split("train"),
gen_kwargs={"data_dir": data_dir, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split("dev"),
gen_kwargs={"data_dir": data_dir, "split": "dev"},
),
datasets.SplitGenerator(
name=datasets.Split("test"),
gen_kwargs={"data_dir": data_dir, "split": "test"},
)
]
def _generate_examples(self, data_dir, split):
""" Yields examples. """
with gzip.open(data_dir, "rb") as f:
data = pickle.load(f)
for i, example in enumerate(data[split]):
prompt = construct_prompt(example, self.config.name.split("_")[0])
yield i, {
"repo_name": example["repo_name"],
"file_path": example["file_path"],
"context": example["context"],
"import_statement": example["import_statement"],
"code": example["code"],
"prompt": prompt,
"next_line": example["next_line"]
}
|