Datasets:

Tasks:
Other
Languages:
English
ArXiv:
License:
File size: 7,494 Bytes
4beb224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5c144
4beb224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FewRel Dataset."""


import json

import datasets


_CITATION = """@inproceedings{han-etal-2018-fewrel,
    title = "{F}ew{R}el: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation",
    author = "Han, Xu and Zhu, Hao and Yu, Pengfei and Wang, Ziyun and Yao, Yuan and Liu, Zhiyuan and Sun, Maosong",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D18-1514",
    doi = "10.18653/v1/D18-1514",
    pages = "4803--4809"
}

@inproceedings{gao-etal-2019-fewrel,
    title = "{F}ew{R}el 2.0: Towards More Challenging Few-Shot Relation Classification",
    author = "Gao, Tianyu and Han, Xu and Zhu, Hao and Liu, Zhiyuan and Li, Peng and Sun, Maosong and Zhou, Jie",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D19-1649",
    doi = "10.18653/v1/D19-1649",
    pages = "6251--6256"
}
"""

_DESCRIPTION = """\
FewRel is a large-scale few-shot relation extraction dataset, which contains more than one hundred relations and tens of thousands of annotated instances cross different domains.
"""

_HOMEPAGE = "https://thunlp.github.io/"

_LICENSE = "https://raw.githubusercontent.com/thunlp/FewRel/master/LICENSE"

DATA_URL = "https://raw.githubusercontent.com/thunlp/FewRel/master/data/"
_URLs = {
    "train_wiki": DATA_URL + "train_wiki.json",
    "val_nyt": DATA_URL + "val_nyt.json",
    "val_pubmed": DATA_URL + "val_pubmed.json",
    "val_semeval": DATA_URL + "val_semeval.json",
    "val_wiki": DATA_URL + "val_wiki.json",
    "pid2name": DATA_URL + "pid2name.json",
    "pubmed_unsupervised": DATA_URL + "pubmed_unsupervised.json",
}


class FewRel(datasets.GeneratorBasedBuilder):
    """The FewRelDataset."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="default", version=VERSION, description="This covers the entire FewRel dataset."),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "relation": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "head": {
                    "text": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "indices": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                },
                "tail": {
                    "text": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "indices": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                },
                "names": datasets.Sequence(datasets.Value("string"))
                # These are the features of your dataset like images, labels ...
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split(key),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir[key],
                    "pid2name": data_dir["pid2name"],
                    "return_names": key in ["train_wiki", "val_wiki", "val_nyt"],
                },
            )
            for key in data_dir.keys()
            if key != "pid2name"
        ]

    def _generate_examples(self, filepath, pid2name, return_names):
        """Yields examples."""
        pid2name_dict = {}
        with open(pid2name, encoding="utf-8") as f:
            data = json.load(f)
        for key in list(data.keys()):
            name_1 = data[key][0]
            name_2 = data[key][1]
            pid2name_dict[key] = [name_1, name_2]

        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
        if isinstance(data, dict):
            id = 0
            for key in list(data.keys()):
                for items in data[key]:
                    tokens = items["tokens"]
                    h_0 = items["h"][0]
                    h_1 = items["h"][1]
                    h_2 = items["h"][2]
                    t_0 = items["t"][0]
                    t_1 = items["t"][1]
                    t_2 = items["t"][2]
                    id += 1
                    yield id, {
                        "relation": key,
                        "tokens": tokens,
                        "head": {"text": h_0, "type": h_1, "indices": h_2},
                        "tail": {"text": t_0, "type": t_1, "indices": t_2},
                        "names": pid2name_dict[key]
                        if return_names
                        else [
                            key,
                        ],
                    }
        else:  # For `pubmed_unsupervised.json`
            id = 0
            for items in data:
                tokens = items["tokens"]
                h_0 = items["h"][0]
                h_1 = items["h"][1]
                h_2 = items["h"][2]
                t_0 = items["t"][0]
                t_1 = items["t"][1]
                t_2 = items["t"][2]
                id += 1
                yield id, {
                    "relation": "",
                    "tokens": tokens,
                    "head": {"text": h_0, "type": h_1, "indices": h_2},
                    "tail": {"text": t_0, "type": t_1, "indices": t_2},
                    "names": [
                        "",
                    ],
                }