File size: 5,322 Bytes
f8c8d34
 
 
 
 
 
 
 
 
dd3a93f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c8d34
 
 
 
 
 
 
 
 
 
 
 
 
 
5377fb0
 
 
 
 
f8c8d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5377fb0
f8c8d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b101a
 
 
 
 
f8c8d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset"""


import json

import datasets


_CITATION = """\
@inproceedings{yao-etal-2019-docred,
    title = "{D}oc{RED}: A Large-Scale Document-Level Relation Extraction Dataset",
    author = "Yao, Yuan  and
      Ye, Deming  and
      Li, Peng  and
      Han, Xu  and
      Lin, Yankai  and
      Liu, Zhenghao  and
      Liu, Zhiyuan  and
      Huang, Lixin  and
      Zhou, Jie  and
      Sun, Maosong",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1074",
    doi = "10.18653/v1/P19-1074",
    pages = "764--777",
}
"""

_DESCRIPTION = """\
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by \
existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single \
entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed \
from Wikipedia and Wikidata with three features:
    - DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text.
    - DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document.
    - Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios.
"""

_URLS = {
    "dev": "data/dev.json.gz",
    "train_distant": "data/train_distant.json.gz",
    "train_annotated": "data/train_annotated.json.gz",
    "test": "data/test.json.gz",
    "rel_info": "data/rel_info.json.gz",
}


class DocRed(datasets.GeneratorBasedBuilder):
    """DocRED: A Large-Scale Document-Level Relation Extraction Dataset"""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "title": datasets.Value("string"),
                    "sents": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
                    "vertexSet": [
                        [
                            {
                                "name": datasets.Value("string"),
                                "sent_id": datasets.Value("int32"),
                                "pos": datasets.features.Sequence(datasets.Value("int32")),
                                "type": datasets.Value("string"),
                            }
                        ]
                    ],
                    "labels": datasets.features.Sequence(
                        {
                            "head": datasets.Value("int32"),
                            "tail": datasets.Value("int32"),
                            "relation_id": datasets.Value("string"),
                            "relation_text": datasets.Value("string"),
                            "evidence": datasets.features.Sequence(datasets.Value("int32")),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/thunlp/DocRED",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloads = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloads["dev"], "rel_info": downloads["rel_info"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"], "rel_info": downloads["rel_info"]}
            ),
            datasets.SplitGenerator(
                name="train_annotated",
                gen_kwargs={"filepath": downloads["train_annotated"], "rel_info": downloads["rel_info"]},
            ),
            datasets.SplitGenerator(
                name="train_distant",
                gen_kwargs={"filepath": downloads["train_distant"], "rel_info": downloads["rel_info"]},
            ),
        ]

    def _generate_examples(self, filepath, rel_info):
        """Generate DocRED examples."""

        with open(rel_info, encoding="utf-8") as f:
            relation_name_map = json.load(f)
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)

        for idx, example in enumerate(data):

            # Test set has no labels - Results need to be uploaded to Codalab
            if "labels" not in example.keys():
                example["labels"] = []

            for label in example["labels"]:
                # Rename and include full relation names
                label["relation_text"] = relation_name_map[label["r"]]
                label["relation_id"] = label["r"]
                label["head"] = label["h"]
                label["tail"] = label["t"]
                del label["r"]
                del label["h"]
                del label["t"]

            yield idx, example