Datasets:

Languages:
Chinese
License:
File size: 7,801 Bytes
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
0d08752
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d08752
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d08752
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a4566
9c8827c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""KdConv: Chinese multi-domain Knowledge-driven Conversation dataset"""


import json
import os

import datasets


_CITATION = """\
@inproceedings{zhou-etal-2020-kdconv,
    title = "{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation",
    author = "Zhou, Hao  and
      Zheng, Chujie  and
      Huang, Kaili  and
      Huang, Minlie  and
      Zhu, Xiaoyan",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.635",
    doi = "10.18653/v1/2020.acl-main.635",
    pages = "7098--7108",
}
"""


_DESCRIPTION = """\
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn \
conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), \
and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related \
topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer \
learning and domain adaptation.\
"""


_HOMEPAGE = "https://github.com/thu-coai/KdConv"


_LICENSE = "Apache License 2.0"


_URL = "data.zip"

_DOMAINS = ["travel", "music", "film"]
_DATA_TYPES = ["dialogues", "knowledge_base"]


class KdConv(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=domain + "_" + type,
            description="This part of dataset covers {0} domain and {1} data " "of the corpus".format(domain, type),
        )
        for domain in _DOMAINS
        for type in _DATA_TYPES
    ] + [
        datasets.BuilderConfig(
            name="all_" + type,
            description="This part of dataset covers all domains and {0} data of " "the corpus".format(type),
        )
        for type in _DATA_TYPES
    ]

    DEFAULT_CONFIG_NAME = "all_dialogues"

    def _info(self):
        if "dialogues" in self.config.name:
            features = datasets.Features(
                {
                    "messages": datasets.Sequence(
                        {
                            "message": datasets.Value("string"),
                            "attrs": datasets.Sequence(
                                {
                                    "attrname": datasets.Value("string"),
                                    "attrvalue": datasets.Value("string"),
                                    "name": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                    "name": datasets.Value("string"),
                    "domain": datasets.Value("string"),
                }
            )
        else:
            features = datasets.Features(
                {
                    "head_entity": datasets.Value("string"),
                    "kb_triplets": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "domain": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        data_dir = dl_manager.download_and_extract(_URL)
        base_dir = os.path.join(data_dir, "data")
        if "dialogues" in self.config.name:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "data_dir": base_dir,
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"data_dir": base_dir, "split": "test"},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "data_dir": base_dir,
                        "split": "dev",
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "data_dir": base_dir,
                        "split": "train",
                    },
                ),
            ]

    def _generate_examples(self, data_dir, split):
        """Yields examples."""
        if "dialogues" in self.config.name:
            if "all" in self.config.name:
                file_dict = {
                    domain: os.path.join(os.path.join(data_dir, domain), split + ".json") for domain in _DOMAINS
                }
            else:
                domain = self.config.name.split("_")[0]
                file_dict = {domain: os.path.join(os.path.join(data_dir, domain), split + ".json")}
            id_ = -1
            for domain, filepath in file_dict.items():
                with open(filepath, encoding="utf-8") as f:
                    conversations = json.load(f)
                    for conversation in conversations:
                        id_ += 1
                        conversation["domain"] = domain
                        for turn in conversation["messages"]:
                            if "attrs" in turn:
                                attrnames = [kb_triplet.get("attrname", "") for kb_triplet in turn["attrs"]]
                                attrvalues = [kb_triplet.get("attrvalue", "") for kb_triplet in turn["attrs"]]
                                names = [kb_triplet.get("name", "") for kb_triplet in turn["attrs"]]
                            else:
                                attrnames, attrvalues, names = [], [], []
                            turn["attrs"] = {"attrname": attrnames, "attrvalue": attrvalues, "name": names}

                        yield id_, conversation
        else:
            if "all" in self.config.name:
                file_dict = {
                    domain: os.path.join(os.path.join(data_dir, domain), "kb_" + domain + ".json")
                    for domain in _DOMAINS
                }
            else:
                domain = self.config.name.split("_")[0]
                file_dict = {domain: os.path.join(os.path.join(data_dir, domain), "kb_" + domain + ".json")}

            id_ = -1
            for domain, filepath in file_dict.items():
                with open(filepath, encoding="utf-8") as f:
                    kb_dict = json.load(f)
                    for head_entity, kb_triplets in kb_dict.items():
                        id_ += 1
                        yield id_, {"head_entity": head_entity, "kb_triplets": kb_triplets, "domain": domain}