Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
extractive-qa
Languages:
code
Size:
100K - 1M
License:
File size: 8,491 Bytes
7dab535 2f58404 7dab535 2f58404 7dab535 2f58404 7dab535 2f58404 7dab535 2f58404 7dab535 2f58404 7dab535 2f58404 7dab535 b8d9887 7dab535 b8d9887 9fa7b76 7dab535 9fa7b76 7dab535 9fa7b76 7dab535 9fa7b76 7dab535 9fa7b76 7dab535 ab2edcb 7dab535 8e0f46c 7dab535 b4321fb 7dab535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# coding=utf-8
# Copyright 2022 CodeQueries Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The CodeQueries benchmark."""
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CODEQUERIES_CITATION = """\
@article{codequeries2022,
title={Learning to Answer Semantic Queries over Code},
author={A, B, C, D, E, F},
journal={arXiv preprint arXiv:<.>},
year={2022}
}
"""
_IDEAL_DESCRIPTION = """\
CodeQueries Ideal setup.
"""
_PREFIX_DESCRIPTION = """\
CodeQueries Prefix setup."""
_SLIDING_WINDOW_DESCRIPTION = """\
CodeQueries Sliding window setup."""
_FILE_IDEAL_DESCRIPTION = """\
CodeQueries File level Ideal setup."""
_TWOSTEP_DESCRIPTION = """\
CodeQueries Twostep setup."""
class CodequeriesConfig(datasets.BuilderConfig):
"""BuilderConfig for Codequeries."""
def __init__(self, features, citation, url, **kwargs):
"""BuilderConfig for Codequeries.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
citation: `string`, citation for the data set.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 1.0.0: Initial version.
super(CodequeriesConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
self.citation = citation
self.url = url
class Codequeries(datasets.GeneratorBasedBuilder):
"""The Codequeries benchmark."""
BUILDER_CONFIGS = [
CodequeriesConfig(
name="ideal",
description=_IDEAL_DESCRIPTION,
features=["query_name", "context_blocks", "answer_spans",
"supporting_fact_spans", "code_file_path", "example_type",
"subtokenized_input_sequence", "label_sequence"],
citation=_CODEQUERIES_CITATION,
# homepage="",
# data_url="",
url="",
),
# CodequeriesConfig(
# name="prefix",
# description=_PREFIX_DESCRIPTION,
# features=["query_name", "context_blocks", "answer_spans",
# "supporting_fact_spans", "code_file_path", "example_type",
# "subtokenized_input_sequence", "label_sequence"],
# citation=_CODEQUERIES_CITATION,
# url="",
# ),
# CodequeriesConfig(
# name="sliding_window",
# description=_SLIDING_WINDOW_DESCRIPTION,
# features=["query_name", "context_blocks", "answer_spans",
# "supporting_fact_spans", "code_file_path", "example_type",
# "subtokenized_input_sequence", "label_sequence"],
# citation=_CODEQUERIES_CITATION,
# url="",
# ),
CodequeriesConfig(
name="file_ideal",
description=_FILE_IDEAL_DESCRIPTION,
features=["query_name", "context_blocks", "answer_spans",
"supporting_fact_spans", "code_file_path", "example_type",
"subtokenized_input_sequence", "label_sequence"],
citation=_CODEQUERIES_CITATION,
url="",
),
# CodequeriesConfig(
# name="twostep",
# description=_TWOSTEP_DESCRIPTION,
# features=["query_name", "context_blocks", "answer_spans",
# "supporting_fact_spans", "code_file_path", "example_type",
# "subtokenized_input_sequence", "label_sequence"],
# citation=_CODEQUERIES_CITATION,
# url="",
# ),
]
# DEFAULT_CONFIG_NAME = "ideal"
def _info(self):
# features = {feature: datasets.Value("string") for feature in self.config.features}
features = {}
features["query_name"] = datasets.Value("string")
features["context_blocks"] = [
{
"content": datasets.Value("string"),
"metadata": datasets.Value("string"),
"header": datasets.Value("string")
}
]
features["answer_spans"] = [
{
'span': datasets.Value("string"),
'start_line': datasets.Value("int32"),
'start_column': datasets.Value("int32"),
'end_line': datasets.Value("int32"),
'end_column': datasets.Value("int32")
}
]
features["supporting_fact_spans"] = [
{
'span': datasets.Value("string"),
'start_line': datasets.Value("int32"),
'start_column': datasets.Value("int32"),
'end_line': datasets.Value("int32"),
'end_column': datasets.Value("int32")
}
]
features["code_file_path"] = datasets.Value("string")
features["example_type"] = datasets.Value("int32")
features["subtokenized_input_sequence"] = datasets.features.Sequence(datasets.Value("string"))
features["label_sequence"] = datasets.features.Sequence(datasets.Value("int32"))
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=_CODEQUERIES_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = ""
if self.config.name in ["prefix", "sliding_window", "file_ideal", "twostep"]:
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(dl_dir, self.config.name + "_test.json"),
"split": datasets.Split.TEST,
},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(dl_dir, self.config.name + "_train.json"),
"split": datasets.Split.TRAIN,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(dl_dir, self.config.name + "_val.json"),
"split": datasets.Split.VALIDATION,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(dl_dir, self.config.name + "_test.json"),
"split": datasets.Split.TEST,
},
),
]
def _generate_examples(self, filepath, split):
if self.config.name in ["prefix", "sliding_window", "file_ideal", "twostep"]:
assert split == datasets.Split.TEST
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
key = 0
for line in f:
row = json.loads(line)
instance_key = str(key) + "_" + row["query_name"] + "_" + row["code_file_path"]
yield instance_key, {
"query_name": row["query_name"],
"context_blocks": row["context_blocks"],
"answer_spans": row["answer_spans"],
"supporting_fact_spans": row["supporting_fact_spans"],
"code_file_path": row["code_file_path"],
"example_type": row["example_type"],
"subtokenized_input_sequence": row["subtokenized_input_sequence"],
"label_sequence": row["label_sequence"],
}
key += 1
|