File size: 13,319 Bytes
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd7c0c8
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd7c0c8
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fa87d
 
 
cb07198
 
 
dd7c0c8
 
cb07198
 
 
 
dd7c0c8
cb07198
 
 
 
8dd3b3b
fec120c
8dd3b3b
cb07198
 
 
 
 
 
 
 
dd7c0c8
 
cb07198
 
 
 
dd7c0c8
cb07198
 
 
 
8dd3b3b
010d1e0
8dd3b3b
cb07198
dd7c0c8
cb07198
 
 
 
 
 
dd7c0c8
 
69d3221
cb07198
 
 
 
dd7c0c8
cb07198
 
 
 
8dd3b3b
69d3221
8dd3b3b
cb07198
dd7c0c8
cb07198
 
 
 
 
dd7c0c8
 
 
cb07198
 
 
 
dd7c0c8
cb07198
 
 
 
8dd3b3b
cb07198
fec120c
8dd3b3b
cb07198
dd7c0c8
cb07198
 
 
dd7c0c8
cb07198
 
dd7c0c8
 
 
cb07198
 
 
dd7c0c8
cb07198
 
 
 
8dd3b3b
fec120c
8dd3b3b
cb07198
dd7c0c8
cb07198
 
 
 
 
 
 
 
 
28b57db
cb07198
 
 
 
 
 
 
 
 
 
 
28b57db
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8d614
 
 
 
 
 
 
 
 
 
 
 
 
 
cb07198
2e8d614
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import pandas as pd
import pickle
import numpy as np
import torch


def create_vocab(file,task):
    with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
        condVocab = pickle.load(fp)
    condVocabDict={}
    condVocabDict[0]=0
    for val in range(len(condVocab)):
        condVocabDict[condVocab[val]]= val+1    

    return condVocabDict

def gender_vocab():
    genderVocabDict={}
    genderVocabDict['<PAD>']=0
    genderVocabDict['M']=1
    genderVocabDict['F']=2

    return genderVocabDict

def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
        condVocabDict={}
        procVocabDict={}
        medVocabDict={}
        outVocabDict={}
        chartVocabDict={}
        labVocabDict={}
        ethVocabDict={}
        ageVocabDict={}
        genderVocabDict={}
        insVocabDict={}
        
        ethVocabDict=create_vocab('ethVocab',task)
        with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp:
            pickle.dump(ethVocabDict, fp)
            
        ageVocabDict=create_vocab('ageVocab',task)
        with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp:
            pickle.dump(ageVocabDict, fp)
        
        genderVocabDict=gender_vocab()
        with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp:
            pickle.dump(genderVocabDict, fp)
            
        insVocabDict=create_vocab('insVocab',task)
        with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp:
            pickle.dump(insVocabDict, fp)
        
        if diag_flag:
            file='condVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                condVocabDict = pickle.load(fp)
        if proc_flag:
            file='procVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                procVocabDict = pickle.load(fp)
        if med_flag:
            file='medVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                medVocabDict = pickle.load(fp)
        if out_flag:
            file='outVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                outVocabDict = pickle.load(fp)
        if chart_flag:
            file='chartVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                chartVocabDict = pickle.load(fp)
        if lab_flag:
            file='labsVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                labVocabDict = pickle.load(fp)
        
        return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict

def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
    meds=data['Med']
    proc = data['Proc']
    out = data['Out']
    chart = data['Chart']
    cond= data['Cond']['fids']

    cond_df=pd.DataFrame()
    proc_df=pd.DataFrame()
    out_df=pd.DataFrame()
    chart_df=pd.DataFrame()
    meds_df=pd.DataFrame()

    #demographic
    demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
    new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
    demo = demo.append(new_row, ignore_index=True)

    ##########COND#########
    if (feat_cond):
        #get all conds
        with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
            conDict = pickle.load(fp)
        conds=pd.DataFrame(conDict,columns=['COND'])
        features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])

        #onehot encode
        if(cond ==[]):
            cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND'])
            cond_df=cond_df.fillna(0)
        else:
            cond_df=pd.DataFrame(cond,columns=['COND'])
            cond_df['val']=1
            cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
            cond_df=cond_df.fillna(0)
            oneh = cond_df.sum().to_frame().T
            combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
            combined_oneh=combined_df.sum().to_frame().T
            cond_df=combined_oneh
            for c in cond_df.columns :
                if c not in features: 
                    cond_df=cond_df.drop(columns=[c])

    ##########PROC#########
    if (feat_proc):
        with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
            procDic = pickle.load(fp)

        if proc :
            feat=proc.keys()
            proc_val=[proc[key] for key in feat]
            procedures=pd.DataFrame(procDic,columns=['PROC'])
            features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
            procs=pd.DataFrame(columns=feat)
            for p,v in zip(feat,proc_val):
                procs[p]=v
            features=features.drop(columns=procs.columns.to_list())
            proc_df = pd.concat([features,procs],axis=1).fillna(0)
            proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
        else:
            procedures=pd.DataFrame(procDic,columns=['PROC'])
            features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
            features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
            proc_df=features.fillna(0)

    ##########OUT#########
    if (feat_out):
        with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
            outDic = pickle.load(fp)

        if out :
            feat=out.keys()
            out_val=[out[key] for key in feat]
            outputs=pd.DataFrame(outDic,columns=['OUT'])
            features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
            outs=pd.DataFrame(columns=feat)
            for o,v in zip(feat,out_val):
                outs[o]=v
            features=features.drop(columns=outs.columns.to_list())
            out_df = pd.concat([features,outs],axis=1).fillna(0)
            out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
        else:
            outputs=pd.DataFrame(outDic,columns=['OUT'])
            features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
            features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
            out_df=features.fillna(0)

    ##########CHART#########
    if (feat_chart):
        with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
            chartDic = pickle.load(fp)
    
        if chart:
            charts=chart['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            charts=pd.DataFrame(chartDic,columns=['CHART'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
            chart=pd.DataFrame(columns=feat)
            for c,v in zip(feat,chart_val):
                chart[c]=v
            features=features.drop(columns=chart.columns.to_list())
            chart_df = pd.concat([features,chart],axis=1).fillna(0)
            chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
        else:
            charts=pd.DataFrame(chartDic,columns=['CHART'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
            features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
            chart_df=features.fillna(0)
        ##########LAB#########
    if (feat_lab):
        with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
            chartDic = pickle.load(fp)

        if chart:
            charts=chart['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            charts=pd.DataFrame(chartDic,columns=['LAB'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
            chart=pd.DataFrame(columns=feat)
            for c,v in zip(feat,chart_val):
                chart[c]=v
            features=features.drop(columns=chart.columns.to_list())
            chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
            chart_df = pd.concat([features,chart],axis=1).fillna(0)
            chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
        else:
            charts=pd.DataFrame(chartDic,columns=['LAB'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
            features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
            chart_df=features.fillna(0)
    
    ###MEDS
    if (feat_meds):
        with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
                medDic = pickle.load(fp)

        if meds:
            feat=meds['signal'].keys()
            med_val=[meds['amount'][key] for key in feat]
            meds=pd.DataFrame(medDic,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
            med=pd.DataFrame(columns=feat)
            for m,v in zip(feat,med_val):
                med[m]=v
            features=features.drop(columns=med.columns.to_list())
            meds_df = pd.concat([features,med],axis=1).fillna(0)
            meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
        else:
            meds=pd.DataFrame(medDic,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
            features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
            meds_df=features.fillna(0)

    dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
    return dyn_df,cond_df,demo



def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab):
    stat_df = torch.zeros(size=(1,0))
    demo_df = torch.zeros(size=(1,0))
    meds = torch.zeros(size=(0,0))
    charts = torch.zeros(size=(0,0))
    proc = torch.zeros(size=(0,0))
    out = torch.zeros(size=(0,0))
    lab = torch.zeros(size=(0,0))
    stat_df = torch.zeros(size=(1,0))
    demo_df = torch.zeros(size=(1,0))
    
    size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
    dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab)
    if feat_chart:
        charts = dyn['CHART']
        charts=charts.to_numpy()
        charts = torch.tensor(charts, dtype=torch.long)
        charts = charts.tolist()
        
    if feat_meds:
        meds = dyn['MEDS']
        meds=meds.to_numpy()
        meds = torch.tensor(meds, dtype=torch.long)
        meds = meds.tolist()

    if feat_proc:
        proc = dyn['PROC']
        proc=proc.to_numpy()
        proc = torch.tensor(proc, dtype=torch.long)
        proc = proc.tolist()

    if feat_out:
        out = dyn['OUT']
        out=out.to_numpy()
        out = torch.tensor(out, dtype=torch.long)
        out = out.tolist()

    if feat_lab:
        lab = dyn['LAB']
        lab=lab.to_numpy()
        lab = torch.tensor(lab, dtype=torch.long)
        lab = lab.tolist()

    if feat_cond:
        stat=cond_df
        stat = stat.to_numpy()
        stat = torch.tensor(stat)
        if stat_df[0].nelement():
            stat_df = torch.cat((stat_df,stat),0)
        else:
            stat_df = stat 

        stat_df = torch.tensor(stat_df)
        stat_df = stat_df.type(torch.LongTensor)
        stat_df = stat_df.squeeze()

        
    y = int(demo['label'])
    y_df = torch.tensor(y)
    y_df = y_df.type(torch.LongTensor)
    
    demo["gender"].replace(gender_vocab, inplace=True)
    demo["ethnicity"].replace(eth_vocab, inplace=True)
    demo["insurance"].replace(ins_vocab, inplace=True)
    demo["Age"].replace(age_vocab, inplace=True)
    demo=demo[["gender","ethnicity","insurance","Age"]]
    demo = demo.values
    demo = torch.tensor(demo)
    if demo_df[0].nelement():
        demo_df = torch.cat((demo_df,demo),0)
    else:
        demo_df = demo
    demo_df = torch.tensor(demo_df)
    demo_df = demo_df.type(torch.LongTensor)
    demo_df=demo_df.squeeze()

    return stat_df, demo_df, meds, charts, out, proc, lab, y


def generate_ml(dyn,stat,demo,concat_cols,concat):
    X_df=pd.DataFrame()
    if concat:
        dyna=dyn.copy()
        dyna.columns=dyna.columns.droplevel(0)
        dyna=dyna.to_numpy()
        dyna=np.nan_to_num(dyna, copy=False)
        dyna=dyna.reshape(1,-1)
        dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
    else:
        dyn_df=pd.DataFrame()
        for key in dyn.columns.levels[0]:     
            dyn_temp=dyn[key]
            if ((key=="CHART") or (key=="MEDS")):
                agg=dyn_temp.aggregate("mean")
                agg=agg.reset_index()
            else:
                agg=dyn_temp.aggregate("max")
                agg=agg.reset_index()

            if dyn_df.empty:
                dyn_df=agg
            else:
                dyn_df=pd.concat([dyn_df,agg],axis=0)
        dyn_df=dyn_df.T
        dyn_df.columns = dyn_df.iloc[0]
        dyn_df=dyn_df.iloc[1:,:]
        
    X_df=pd.concat([dyn_df,stat],axis=1)
    X_df=pd.concat([X_df,demo],axis=1)
    return X_df