File size: 15,078 Bytes
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cad1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cad1204
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fa87d
 
 
cb07198
 
 
 
 
 
cad1204
cb07198
 
 
 
8dd3b3b
fec120c
8dd3b3b
cb07198
cad1204
cb07198
 
 
 
 
 
 
 
 
cad1204
cb07198
 
 
 
8dd3b3b
010d1e0
8dd3b3b
cb07198
cad1204
cb07198
 
 
 
 
 
 
 
 
 
cad1204
cb07198
 
 
 
8dd3b3b
69d3221
8dd3b3b
cb07198
cad1204
cb07198
 
 
 
cad1204
cb07198
 
 
 
 
cad1204
cb07198
 
 
 
8dd3b3b
cb07198
fec120c
8dd3b3b
cb07198
cad1204
cb07198
 
 
dd7c0c8
cb07198
 
 
 
 
cad1204
cb07198
 
 
 
8dd3b3b
fec120c
8dd3b3b
cb07198
cad1204
cb07198
 
 
 
 
 
 
 
 
cad1204
88cbab5
 
 
 
 
 
 
8496698
cb07198
cad1204
cb07198
6548ca8
9266bf8
cb07198
88cbab5
cb07198
 
9266bf8
cb07198
 
9266bf8
cb07198
 
9266bf8
cb07198
2e8d614
24816db
9266bf8
cb07198
2e8d614
cb07198
 
 
 
991fed0
 
9266bf8
6548ca8
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ff6ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d884d
5ff6ba1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import pandas as pd
import pickle
import numpy as np
import torch


def create_vocab(file,task):
    with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
        condVocab = pickle.load(fp)
    condVocabDict={}
    condVocabDict[0]=0
    for val in range(len(condVocab)):
        condVocabDict[condVocab[val]]= val+1    

    return condVocabDict

def gender_vocab():
    genderVocabDict={}
    genderVocabDict['<PAD>']=0
    genderVocabDict['M']=1
    genderVocabDict['F']=2

    return genderVocabDict

def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
        condVocabDict={}
        procVocabDict={}
        medVocabDict={}
        outVocabDict={}
        chartVocabDict={}
        labVocabDict={}
        ethVocabDict={}
        ageVocabDict={}
        genderVocabDict={}
        insVocabDict={}
        
        ethVocabDict=create_vocab('ethVocab',task)
        with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp:
            pickle.dump(ethVocabDict, fp)
            
        ageVocabDict=create_vocab('ageVocab',task)
        with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp:
            pickle.dump(ageVocabDict, fp)
        
        genderVocabDict=gender_vocab()
        with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp:
            pickle.dump(genderVocabDict, fp)
            
        insVocabDict=create_vocab('insVocab',task)
        with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp:
            pickle.dump(insVocabDict, fp)
        
        if diag_flag:
            file='condVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                condVocabDict = pickle.load(fp)
        if proc_flag:
            file='procVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                procVocabDict = pickle.load(fp)
        if med_flag:
            file='medVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                medVocabDict = pickle.load(fp)
        if out_flag:
            file='outVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                outVocabDict = pickle.load(fp)
        if chart_flag:
            file='chartVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                chartVocabDict = pickle.load(fp)
        if lab_flag:
            file='labsVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                labVocabDict = pickle.load(fp)
        
        return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict

def open_dict(task,cond, proc, out, chart, lab, med):
    if cond:
        with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
            condDict = pickle.load(fp)
    else:
        condDict = None
    if proc:
        with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
            procDict = pickle.load(fp)
    else:
        procDict = None
    if out:
        with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
            outDict = pickle.load(fp)
    else:
        outDict = None
    if chart:
        with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
            chartDict = pickle.load(fp)
    elif lab:
        with open("./data/dict/"+task+"/labsVocab", 'rb') as fp:
            chartDict = pickle.load(fp)
    else:
        chartDict = None
    if med:
        with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
            medDict = pickle.load(fp)
    else:
        medDict = None
    
    return condDict, procDict, outDict, chartDict, medDict

def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
    meds=data['Med']
    proc = data['Proc']
    out = data['Out']
    chart = data['Chart']
    cond= data['Cond']['fids']

    cond_df=pd.DataFrame()
    proc_df=pd.DataFrame()
    out_df=pd.DataFrame()
    chart_df=pd.DataFrame()
    meds_df=pd.DataFrame()

    #demographic
    demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
    new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
    demo = demo.append(new_row, ignore_index=True)

    ##########COND#########
    if (feat_cond):
        conds=pd.DataFrame(condDict,columns=['COND'])
        features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])

        #onehot encode
        if(cond ==[]):
            cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND'])
            cond_df=cond_df.fillna(0)
        else:
            cond_df=pd.DataFrame(cond,columns=['COND'])
            cond_df['val']=1
            cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
            cond_df=cond_df.fillna(0)
            oneh = cond_df.sum().to_frame().T
            combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
            combined_oneh=combined_df.sum().to_frame().T
            cond_df=combined_oneh
            for c in cond_df.columns :
                if c not in features: 
                    cond_df=cond_df.drop(columns=[c])

    ##########PROC#########
    if (feat_proc):
        if proc :
            feat=proc.keys()
            proc_val=[proc[key] for key in feat]
            procedures=pd.DataFrame(procDict,columns=['PROC'])
            features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
            procs=pd.DataFrame(columns=feat)
            for p,v in zip(feat,proc_val):
                procs[p]=v
            features=features.drop(columns=procs.columns.to_list())
            proc_df = pd.concat([features,procs],axis=1).fillna(0)
            proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
        else:
            procedures=pd.DataFrame(procDict,columns=['PROC'])
            features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
            features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
            proc_df=features.fillna(0)

    ##########OUT#########
    if (feat_out):
        if out :
            feat=out.keys()
            out_val=[out[key] for key in feat]
            outputs=pd.DataFrame(outDict,columns=['OUT'])
            features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
            outs=pd.DataFrame(columns=feat)
            for o,v in zip(feat,out_val):
                outs[o]=v
            features=features.drop(columns=outs.columns.to_list())
            out_df = pd.concat([features,outs],axis=1).fillna(0)
            out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
        else:
            outputs=pd.DataFrame(outDict,columns=['OUT'])
            features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
            features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
            out_df=features.fillna(0)

    ##########CHART#########
    if (feat_chart):
        if chart:
            charts=chart['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            charts=pd.DataFrame(chartDict,columns=['CHART'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
            chart=pd.DataFrame(columns=feat)
            for c,v in zip(feat,chart_val):
                chart[c]=v
            features=features.drop(columns=chart.columns.to_list())
            chart_df = pd.concat([features,chart],axis=1).fillna(0)
            chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
        else:
            charts=pd.DataFrame(chartDict,columns=['CHART'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
            features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
            chart_df=features.fillna(0)
        ##########LAB#########
    
    if (feat_lab):
        if chart:
            charts=chart['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            charts=pd.DataFrame(chartDict,columns=['LAB'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
            chart=pd.DataFrame(columns=feat)
            for c,v in zip(feat,chart_val):
                chart[c]=v
            features=features.drop(columns=chart.columns.to_list())
            chart.columns=pd.MultiIndex.from_product([["LAB"], chart.columns])
            chart_df = pd.concat([features,chart],axis=1).fillna(0)
            chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
        else:
            charts=pd.DataFrame(chartDict,columns=['LAB'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['LAB'])
            features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
            chart_df=features.fillna(0)
    
    ###MEDS
    if (feat_meds):
        if meds:
            feat=meds['signal'].keys()
            med_val=[meds['amount'][key] for key in feat]
            meds=pd.DataFrame(medDict,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
            med=pd.DataFrame(columns=feat)
            for m,v in zip(feat,med_val):
                med[m]=v
            features=features.drop(columns=med.columns.to_list())
            meds_df = pd.concat([features,med],axis=1).fillna(0)
            meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
        else:
            meds=pd.DataFrame(medDict,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
            features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
            meds_df=features.fillna(0)

    dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
    return dyn_df,cond_df,demo



def generate_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
    meds = []
    charts = []
    proc = []
    out = []
    lab = []
    stat = []
    demo = []
    
    size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
    dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict)
    if feat_chart:
        charts = dyn['CHART'].values
   
    if feat_meds:
        meds = dyn['MEDS'].values

    if feat_proc:
        proc = dyn['PROC'].values

    if feat_out:
        out = dyn['OUT'].values

    if feat_lab:
        lab = dyn['LAB'].values

    if feat_cond:
        stat=cond_df.values[0]
  
    y = int(demo['label'])
    
    demo["gender"].replace(gender_vocab, inplace=True)
    demo["ethnicity"].replace(eth_vocab, inplace=True)
    demo["insurance"].replace(ins_vocab, inplace=True)
    demo["Age"].replace(age_vocab, inplace=True)
    demo=demo[["gender","ethnicity","insurance","Age"]]
    demo = demo.values[0]
    
    return stat, demo, meds, charts, out, proc, lab, y


def generate_ml(dyn,stat,demo,concat_cols,concat):
    X_df=pd.DataFrame()
    if concat:
        dyna=dyn.copy()
        dyna.columns=dyna.columns.droplevel(0)
        dyna=dyna.to_numpy()
        dyna=np.nan_to_num(dyna, copy=False)
        dyna=dyna.reshape(1,-1)
        dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
    else:
        dyn_df=pd.DataFrame()
        for key in dyn.columns.levels[0]:     
            dyn_temp=dyn[key]
            if ((key=="CHART") or (key=="MEDS")):
                agg=dyn_temp.aggregate("mean")
                agg=agg.reset_index()
            else:
                agg=dyn_temp.aggregate("max")
                agg=agg.reset_index()

            if dyn_df.empty:
                dyn_df=agg
            else:
                dyn_df=pd.concat([dyn_df,agg],axis=0)
        dyn_df=dyn_df.T
        dyn_df.columns = dyn_df.iloc[0]
        dyn_df=dyn_df.iloc[1:,:]
        
    X_df=pd.concat([dyn_df,stat],axis=1)
    X_df=pd.concat([X_df,demo],axis=1)
    return X_df  


def generate_text(data,icd,items,feat_cond,feat_chart,feat_meds, feat_proc, feat_out):
    #Diagnosis
    if feat_cond:
        conds = data['Cond']['fids']
        cond_text=[]
        for code in conds:
            desc = icd[icd['code']==code]
            if not desc.empty:
                cond_text.append(desc['description'].to_string(index=False))
        template = 'The patient is diagnosed with {}.'
        cond_text = template.format(';'.join(cond_text))
    else :
        cond_text=''
            
    #chart
    if feat_chart:  
        chart = data['Chart']
        if chart:
            charts=chart['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            chart_mean = [round(np.mean(c),3) for c in chart_val]
            feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
            template='{} for {}'
            chart_text = []
            for mean_val, feat_label in zip(chart_mean, feat_text):
                text = template.format(mean_val,feat_label)
                chart_text.append(text)
            chart_text='The chart events mesured are :{}.' + ';'.join(chart_text)
    else:
        chart_text=''
        
        
    #meds
    if feat_meds:  
        meds = data['Med']
        if meds:
            feat=meds['signal'].keys()
            meds_val=[meds['amount'][key] for key in feat]
            meds_mean = [round(np.mean(c),3) for c in meds_val]
            feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
            template='{} of {}'
            meds_text = []
            for mean_val, feat_label in zip(meds_mean, feat_text):
                text = template.format(mean_val,feat_label)
                meds_text.append(text)
            meds_text='The mean amounts of medications administered during the episode are :{}.' + ';'.join(meds_text)
        else:
            meds_text=''

    #proc
    if feat_proc:  
        proc = data['Proc']
        if proc:
            feat=proc.keys()
            feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
            proc_text='The procedures performed are :{}.' + ';'.join(feat_text)
    else:
        proc_text=''
    
    #out
    if feat_out:  
        out = data['Out']
        if out:
            feat=out.keys()
            feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
            out_text='The outputs collected are :{}.' + ';'.join(feat_text)
    else:
        out_text=''

    return cond_text,chart_text,meds_text,proc_text,out_text