File size: 13,566 Bytes
cb07198 f765c2a 7bf6511 f765c2a 00c48b0 f765c2a 00c48b0 f765c2a e021a7f f765c2a e021a7f d529b42 f765c2a 7bf6511 8c8e656 f765c2a 01f8987 f765c2a d13b763 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 3bbae21 f765c2a 8c8e656 f765c2a d529b42 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 3bbae21 f765c2a 8c8e656 f765c2a 8c8e656 01f8987 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a 8c8e656 f765c2a e021a7f f765c2a 00c48b0 7bf6511 d529b42 f765c2a 8c8e656 f765c2a 3bbae21 f765c2a 00c48b0 e021a7f 7bf6511 f765c2a e021a7f f765c2a e021a7f f765c2a 4c36a20 f765c2a 00c48b0 f765c2a 7bf6511 f765c2a d13b763 f765c2a 5ff6ba1 f765c2a 8822c4e f765c2a 5ff6ba1 f765c2a 5ff6ba1 f765c2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import pandas as pd
import pickle
import numpy as np
import torch
################################################################################
################################################################################
## ##
## MIMIC IV DATASET UTILITY FUNCTIONS ##
## ##
################################################################################
################################################################################
def create_vocab(file,task):
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
condVocab = pickle.load(fp)
condVocabDict={}
condVocabDict[0]=0
for val in range(len(condVocab)):
condVocabDict[condVocab[val]]= val+1
return condVocabDict
def gender_vocab():
genderVocabDict={}
genderVocabDict['<PAD>']=0
genderVocabDict['M']=1
genderVocabDict['F']=2
return genderVocabDict
def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
condVocabDict={}
procVocabDict={}
medVocabDict={}
outVocabDict={}
chartVocabDict={}
labVocabDict={}
ethVocabDict={}
ageVocabDict={}
genderVocabDict={}
insVocabDict={}
ethVocabDict=create_vocab('ethVocab',task)
with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp:
pickle.dump(ethVocabDict, fp)
ageVocabDict=create_vocab('ageVocab',task)
with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp:
pickle.dump(ageVocabDict, fp)
genderVocabDict=gender_vocab()
with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp:
pickle.dump(genderVocabDict, fp)
insVocabDict=create_vocab('insVocab',task)
with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp:
pickle.dump(insVocabDict, fp)
if diag_flag:
file='condVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
condVocabDict = pickle.load(fp)
if proc_flag:
file='procVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
procVocabDict = pickle.load(fp)
if med_flag:
file='medVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
medVocabDict = pickle.load(fp)
if out_flag:
file='outVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
outVocabDict = pickle.load(fp)
if chart_flag:
file='chartVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
chartVocabDict = pickle.load(fp)
if lab_flag:
file='labsVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
labVocabDict = pickle.load(fp)
return (len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),
ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict,condVocabDict,procVocabDict,medVocabDict,outVocabDict,chartVocabDict,labVocabDict)
###################################
# CONCATENATE DATA FROM #
# DICT TO CREATE CSV FILES #
###################################
def concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
meds=data['Med']
proc = data['Proc']
out = data['Out']
charts = data['Chart']
cond= data['Cond']['fids']
proc_df=pd.DataFrame()
out_df=pd.DataFrame()
cond_df=pd.DataFrame()
chart_df=pd.DataFrame()
meds_df=pd.DataFrame()
#demographic
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
demo = demo.append(new_row, ignore_index=True)
##########COND#########
if (feat_cond):
cond_df=pd.DataFrame(np.zeros([1,len(condDict)]),columns=condDict)
if cond:
for c in cond : cond_df[c]=1
##########PROC#########
if (feat_proc):
if proc :
feat=proc.keys()
proc_val=[proc[key] for key in feat]
proc_df=pd.DataFrame(np.zeros([interval,len(procDict)]),columns=procDict)
for p,v in zip(feat,proc_val):
proc_df[p]=v
proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
else:
procedures=pd.DataFrame(procDict,columns=['PROC'])
features=pd.DataFrame(np.zeros([interval,len(procedures)]),columns=procedures['PROC'])
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
proc_df=features.fillna(0)
##########OUT#########
if (feat_out):
if out :
feat=out.keys()
out_val=[out[key] for key in feat]
out_df=pd.DataFrame(np.zeros([interval,len(outDict)]),columns=outDict)
for o,v in zip(feat,out_val):
out_df[o]=v
out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
else:
outputs=pd.DataFrame(outDict,columns=['OUT'])
features=pd.DataFrame(np.zeros([interval,len(outputs)]),columns=outputs['OUT'])
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
out_df=features.fillna(0)
##########CHART#########
if (feat_chart):
if charts:
charts=charts['val']
feat=charts.keys()
chart_val=[charts[key] for key in feat]
chart_df=pd.DataFrame(np.zeros([interval,len(chartDict)]),columns=chartDict)
for c,v in zip(feat,chart_val):
chart_df[c]=v
chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
else:
charts=pd.DataFrame(chartDict,columns=['CHART'])
features=pd.DataFrame(np.zeros([interval,len(charts)]),columns=charts['CHART'])
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
chart_df=features.fillna(0)
##########LAB#########
if (feat_lab):
if charts:
feat=charts.keys()
chart_val=[charts[key] for key in feat]
chart_df=pd.DataFrame(np.zeros([interval,len(chartDict)]),columns=chartDict)
for c,v in zip(feat,chart_val):
chart_df[c]=v
chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
else:
charts=pd.DataFrame(chartDict,columns=['LAB'])
features=pd.DataFrame(np.zeros([interval,len(charts)]),columns=charts['LAB'])
features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
chart_df=features.fillna(0)
###MEDS
if (feat_meds):
if meds:
feat=meds['signal'].keys()
med_val=[meds['amount'][key] for key in feat]
meds_df=pd.DataFrame(np.zeros([interval,len(medDict)]),columns=medDict)
for m,v in zip(feat,med_val):
meds_df[m]=v
meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
else:
meds=pd.DataFrame(medDict,columns=['MEDS'])
features=pd.DataFrame(np.zeros([interval,len(meds)]),columns=meds['MEDS'])
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
meds_df=features.fillna(0)
dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
return dyn_df,cond_df,demo
###################################
# CALLED FOR "tensor" ENCODING #
###################################
def generate_deep(data,interval,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict, eth_vocab,gender_vocab,age_vocab,ins_vocab):
meds = []
charts = []
proc = []
out = []
lab = []
stat = []
demo = []
dyn,cond_df,demo=concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict)
if feat_chart:
charts = dyn['CHART'].fillna(0).values
if feat_meds:
meds = dyn['MEDS'].fillna(0).values
if feat_proc:
proc = dyn['PROC'].fillna(0).values
if feat_out:
out = dyn['OUT'].fillna(0).values
if feat_lab:
lab = dyn['LAB'].fillna(0).values
if feat_cond:
stat=cond_df.values[0]
y = int(demo['label'])
demo["gender"].replace(gender_vocab, inplace=True)
demo["ethnicity"].replace(eth_vocab, inplace=True)
demo["insurance"].replace(ins_vocab, inplace=True)
demo["Age"].replace(age_vocab, inplace=True)
demo=demo[["gender","ethnicity","insurance","Age"]]
demo = demo.values[0]
return stat, demo, meds, charts, out, proc, lab, y
###################################
# CALLED FOR "aggreg" OR #
# "concat" ENCODING #
###################################
def generate_ml(dyn, stat, demo, concat_cols, concat):
X_df = pd.DataFrame()
if concat:
dyna=dyn.copy()
dyna.columns=dyna.columns.droplevel(0)
dyna=dyna.to_numpy()
dyna=np.nan_to_num(dyna, copy=False)
dyna=dyna.reshape(1,-1)
dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
else:
dyn_df=pd.DataFrame()
for key in dyn.columns.levels[0]:
dyn_temp=dyn[key]
if ((key=="CHART") or (key=="MEDS")):
agg=dyn_temp.aggregate("mean")
agg=agg.reset_index()
else:
agg=dyn_temp.aggregate("max")
agg=agg.reset_index()
if dyn_df.empty:
dyn_df=agg
else:
dyn_df=pd.concat([dyn_df,agg],axis=0)
dyn_df=dyn_df.T
dyn_df.columns = dyn_df.iloc[0]
dyn_df=dyn_df.iloc[1:,:]
X_df = pd.concat([dyn_df, stat, demo], axis=1)
return X_df
###################################
# CALLED FOR "text" ENCODING #
###################################
def generate_text(data,icd,items,feat_cond,feat_chart,feat_meds, feat_proc, feat_out):
#Demographics
age = data['age']
gender = data['gender']
if gender=='F':
gender='female'
elif gender=='M':
gender='male'
else:
gender='unknown'
ethn=data['ethnicity'].lower()
ins=data['insurance']
#Diagnosis
if feat_cond:
conds = data.get('Cond', {}).get('fids', [])
conds=[icd[icd['icd_code'] == code]['long_title'].to_string(index=False) for code in conds if not icd[icd['icd_code'] == code].empty]
cond_text = '; '.join(conds)
cond_text = f"The patient ({ethn} {gender}, {age} years old, covered by {ins}) was diagnosed with {cond_text}. " if cond_text else ''
else:
cond_text = ''
#chart
if feat_chart:
chart = data.get('Chart', {})
if chart:
charts = chart.get('val', {})
feat = charts.keys()
chart_val = [charts[key] for key in feat]
chart_mean = [round(np.mean(c), 3) for c in chart_val]
feat_text = [(items[items['itemid'] == f]['label']).to_string(index=False) for f in feat]
chart_text = '; '.join(f"{mean_val} for {feat_label}" for mean_val, feat_label in zip(chart_mean, feat_text))
chart_text = f"The chart events measured were: {chart_text}. "
else:
chart_text = 'No chart events were measured. '
else:
chart_text = ''
#meds
if feat_meds:
meds = data.get('Med', {})
if meds:
feat = meds['signal'].keys()
meds_val = [meds['amount'][key] for key in feat]
meds_mean = [round(np.mean(c), 3) for c in meds_val]
feat_text = [(items[items['itemid'] == f]['label']).to_string(index=False) for f in feat]
meds_text = '; '.join(f"{mean_val} of {feat_label}" for mean_val, feat_label in zip(meds_mean, feat_text))
meds_text = f"The mean amounts of medications administered during the episode were: {meds_text}. "
else:
meds_text = 'No medications were administered. '
else:
meds_text = ''
#proc
if feat_proc:
proc = data['Proc']
if proc:
feat=proc.keys()
feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
template = 'The procedures performed were: {}. '
proc_text= template.format('; '.join(feat_text))
else:
proc_text='No procedures were performed. '
else:
proc_text=''
#out
if feat_out:
out = data['Out']
if out:
feat=out.keys()
feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
template ='The outputs collected were: {}.'
out_text = template.format('; '.join(feat_text))
else:
out_text='No outputs were collected.'
else:
out_text=''
return cond_text,chart_text,meds_text,proc_text,out_text
|