File size: 13,566 Bytes
cb07198
 
 
f765c2a
 
7bf6511
 
 
 
 
 
 
f765c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00c48b0
f765c2a
 
 
 
 
 
 
00c48b0
f765c2a
 
 
 
 
 
 
e021a7f
f765c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e021a7f
d529b42
 
f765c2a
7bf6511
 
 
 
8c8e656
f765c2a
 
 
01f8987
f765c2a
 
d13b763
 
 
 
 
f765c2a
 
 
 
 
 
 
8c8e656
 
 
f765c2a
 
 
 
 
 
8c8e656
f765c2a
8c8e656
f765c2a
3bbae21
f765c2a
8c8e656
f765c2a
d529b42
f765c2a
 
 
 
 
 
8c8e656
f765c2a
8c8e656
f765c2a
3bbae21
f765c2a
8c8e656
f765c2a
 
 
 
 
8c8e656
01f8987
f765c2a
 
8c8e656
f765c2a
8c8e656
f765c2a
 
 
8c8e656
f765c2a
 
 
 
 
8c8e656
f765c2a
 
8c8e656
f765c2a
8c8e656
f765c2a
 
 
8c8e656
f765c2a
 
 
 
 
 
 
 
8c8e656
f765c2a
8c8e656
f765c2a
 
 
8c8e656
f765c2a
 
e021a7f
f765c2a
 
00c48b0
 
7bf6511
 
 
d529b42
f765c2a
 
 
 
 
 
 
8c8e656
f765c2a
 
 
 
 
 
 
 
 
 
 
 
 
3bbae21
f765c2a
 
 
 
 
 
 
00c48b0
e021a7f
7bf6511
 
 
 
f765c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e021a7f
f765c2a
 
e021a7f
f765c2a
 
4c36a20
f765c2a
 
 
 
00c48b0
f765c2a
 
 
 
7bf6511
 
 
f765c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13b763
f765c2a
 
5ff6ba1
f765c2a
 
 
 
 
 
 
 
 
 
 
8822c4e
f765c2a
 
 
5ff6ba1
 
f765c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ff6ba1
f765c2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import pandas as pd
import pickle
import numpy as np
import torch

################################################################################
################################################################################
##                                                                            ##
##                   MIMIC IV DATASET UTILITY FUNCTIONS                       ##
##                                                                            ##
################################################################################
################################################################################

def create_vocab(file,task):
    with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
        condVocab = pickle.load(fp)
    condVocabDict={}
    condVocabDict[0]=0
    for val in range(len(condVocab)):
        condVocabDict[condVocab[val]]= val+1    

    return condVocabDict

def gender_vocab():
    genderVocabDict={}
    genderVocabDict['<PAD>']=0
    genderVocabDict['M']=1
    genderVocabDict['F']=2

    return genderVocabDict

def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
        condVocabDict={}
        procVocabDict={}
        medVocabDict={}
        outVocabDict={}
        chartVocabDict={}
        labVocabDict={}
        ethVocabDict={}
        ageVocabDict={}
        genderVocabDict={}
        insVocabDict={}
        
        ethVocabDict=create_vocab('ethVocab',task)
        with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp:
            pickle.dump(ethVocabDict, fp)
            
        ageVocabDict=create_vocab('ageVocab',task)
        with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp:
            pickle.dump(ageVocabDict, fp)
        
        genderVocabDict=gender_vocab()
        with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp:
            pickle.dump(genderVocabDict, fp)
            
        insVocabDict=create_vocab('insVocab',task)
        with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp:
            pickle.dump(insVocabDict, fp)
        
        if diag_flag:
            file='condVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                condVocabDict = pickle.load(fp)
        if proc_flag:
            file='procVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                procVocabDict = pickle.load(fp)
        if med_flag:
            file='medVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                medVocabDict = pickle.load(fp)
        if out_flag:
            file='outVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                outVocabDict = pickle.load(fp)
        if chart_flag:
            file='chartVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                chartVocabDict = pickle.load(fp)
        if lab_flag:
            file='labsVocab'
            with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
                labVocabDict = pickle.load(fp)
        
        return (len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),
                ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict,condVocabDict,procVocabDict,medVocabDict,outVocabDict,chartVocabDict,labVocabDict)

###################################
# CONCATENATE DATA FROM           #
# DICT TO CREATE CSV FILES        #
###################################
def concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict):
    meds=data['Med']
    proc = data['Proc']
    out = data['Out']
    charts = data['Chart']
    cond= data['Cond']['fids']

    proc_df=pd.DataFrame()
    out_df=pd.DataFrame()
    cond_df=pd.DataFrame()
    chart_df=pd.DataFrame()
    meds_df=pd.DataFrame()
    #demographic
    demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
    new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
    demo = demo.append(new_row, ignore_index=True)

    ##########COND#########
    if (feat_cond):
        cond_df=pd.DataFrame(np.zeros([1,len(condDict)]),columns=condDict)
        if cond:
            for c in cond : cond_df[c]=1

    ##########PROC#########
    if (feat_proc):
        if proc :
            feat=proc.keys()
            proc_val=[proc[key] for key in feat]
            proc_df=pd.DataFrame(np.zeros([interval,len(procDict)]),columns=procDict)
            for p,v in zip(feat,proc_val):
                proc_df[p]=v
            proc_df.columns=pd.MultiIndex.from_product([["PROC"], proc_df.columns])
        else:
            procedures=pd.DataFrame(procDict,columns=['PROC'])
            features=pd.DataFrame(np.zeros([interval,len(procedures)]),columns=procedures['PROC'])
            features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
            proc_df=features.fillna(0)

    ##########OUT#########
    if (feat_out):
        if out :
            feat=out.keys()
            out_val=[out[key] for key in feat]
            out_df=pd.DataFrame(np.zeros([interval,len(outDict)]),columns=outDict)
            for o,v in zip(feat,out_val):
                out_df[o]=v
            out_df.columns=pd.MultiIndex.from_product([["OUT"], out_df.columns])
        else:
            outputs=pd.DataFrame(outDict,columns=['OUT'])
            features=pd.DataFrame(np.zeros([interval,len(outputs)]),columns=outputs['OUT'])
            features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
            out_df=features.fillna(0)

    ##########CHART#########
    if (feat_chart):
        if charts:
            charts=charts['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            chart_df=pd.DataFrame(np.zeros([interval,len(chartDict)]),columns=chartDict)
            for c,v in zip(feat,chart_val):
                chart_df[c]=v
            chart_df.columns=pd.MultiIndex.from_product([["CHART"], chart_df.columns])
        else:
            charts=pd.DataFrame(chartDict,columns=['CHART'])
            features=pd.DataFrame(np.zeros([interval,len(charts)]),columns=charts['CHART'])
            features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
            chart_df=features.fillna(0)
        ##########LAB#########
    
    if (feat_lab):
        if charts:
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            chart_df=pd.DataFrame(np.zeros([interval,len(chartDict)]),columns=chartDict)
            for c,v in zip(feat,chart_val):
                chart_df[c]=v
            chart_df.columns=pd.MultiIndex.from_product([["LAB"], chart_df.columns])
        else:
            charts=pd.DataFrame(chartDict,columns=['LAB'])
            features=pd.DataFrame(np.zeros([interval,len(charts)]),columns=charts['LAB'])
            features.columns=pd.MultiIndex.from_product([["LAB"], features.columns])
            chart_df=features.fillna(0)
    
    ###MEDS
    if (feat_meds):
        if meds:
            feat=meds['signal'].keys()
            med_val=[meds['amount'][key] for key in feat]
            meds_df=pd.DataFrame(np.zeros([interval,len(medDict)]),columns=medDict)           
            for m,v in zip(feat,med_val):
                meds_df[m]=v
            meds_df.columns=pd.MultiIndex.from_product([["MEDS"], meds_df.columns])
        else:
            meds=pd.DataFrame(medDict,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([interval,len(meds)]),columns=meds['MEDS'])
            features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
            meds_df=features.fillna(0)

    dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
    return dyn_df,cond_df,demo


###################################
# CALLED FOR "tensor" ENCODING    #
###################################
def generate_deep(data,interval,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict, eth_vocab,gender_vocab,age_vocab,ins_vocab):
    meds = []
    charts = []
    proc = []
    out = []
    lab = []
    stat = []
    demo = []
    dyn,cond_df,demo=concat_data(data,interval,feat_cond,feat_proc,feat_out,feat_chart,feat_meds,feat_lab,condDict, procDict, outDict, chartDict, medDict)
    if feat_chart:
        charts = dyn['CHART'].fillna(0).values
    if feat_meds:
        meds = dyn['MEDS'].fillna(0).values
    if feat_proc:
        proc = dyn['PROC'].fillna(0).values
    if feat_out:
        out = dyn['OUT'].fillna(0).values
    if feat_lab:
        lab = dyn['LAB'].fillna(0).values
    if feat_cond:
        stat=cond_df.values[0]
    y = int(demo['label'])
    
    demo["gender"].replace(gender_vocab, inplace=True)
    demo["ethnicity"].replace(eth_vocab, inplace=True)
    demo["insurance"].replace(ins_vocab, inplace=True)
    demo["Age"].replace(age_vocab, inplace=True)
    demo=demo[["gender","ethnicity","insurance","Age"]]
    demo = demo.values[0]
    return stat, demo, meds, charts, out, proc, lab, y


###################################
# CALLED FOR "aggreg" OR          #
# "concat" ENCODING               #
###################################
def generate_ml(dyn, stat, demo, concat_cols, concat):
    X_df = pd.DataFrame()
    if concat:
        dyna=dyn.copy()
        dyna.columns=dyna.columns.droplevel(0)
        dyna=dyna.to_numpy()
        dyna=np.nan_to_num(dyna, copy=False)
        dyna=dyna.reshape(1,-1)
        dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
    else:
        dyn_df=pd.DataFrame()
        for key in dyn.columns.levels[0]:     
            dyn_temp=dyn[key]
            if ((key=="CHART") or (key=="MEDS")):
                agg=dyn_temp.aggregate("mean")
                agg=agg.reset_index()
            else:
                agg=dyn_temp.aggregate("max")
                agg=agg.reset_index()

            if dyn_df.empty:
                dyn_df=agg
            else:
                dyn_df=pd.concat([dyn_df,agg],axis=0)
        dyn_df=dyn_df.T
        dyn_df.columns = dyn_df.iloc[0]
        dyn_df=dyn_df.iloc[1:,:]
        
    X_df = pd.concat([dyn_df, stat, demo], axis=1)
    return X_df 


###################################
# CALLED FOR "text" ENCODING      #
###################################
def generate_text(data,icd,items,feat_cond,feat_chart,feat_meds, feat_proc, feat_out):
    #Demographics
    age = data['age']
    gender = data['gender']
    if gender=='F':
        gender='female'
    elif gender=='M':
        gender='male'
    else:
        gender='unknown'
    ethn=data['ethnicity'].lower()
    ins=data['insurance']

    #Diagnosis
    if feat_cond:
        conds = data.get('Cond', {}).get('fids', [])
        conds=[icd[icd['icd_code'] == code]['long_title'].to_string(index=False) for code in conds if not icd[icd['icd_code'] == code].empty]
        cond_text = '; '.join(conds)
        cond_text = f"The patient ({ethn} {gender}, {age} years old, covered by {ins}) was diagnosed with {cond_text}. " if cond_text else ''
    else:
        cond_text = ''
            
    #chart
    if feat_chart:
        chart = data.get('Chart', {})
        if chart:
            charts = chart.get('val', {})
            feat = charts.keys()
            chart_val = [charts[key] for key in feat]
            chart_mean = [round(np.mean(c), 3) for c in chart_val]
            feat_text = [(items[items['itemid'] == f]['label']).to_string(index=False) for f in feat]
            chart_text = '; '.join(f"{mean_val} for {feat_label}" for mean_val, feat_label in zip(chart_mean, feat_text))
            chart_text = f"The chart events measured were: {chart_text}. "
        else:
            chart_text = 'No chart events were measured. '
    else:
        chart_text = ''
        
        
    #meds
    if feat_meds:
        meds = data.get('Med', {})
        if meds:
            feat = meds['signal'].keys()
            meds_val = [meds['amount'][key] for key in feat]
            meds_mean = [round(np.mean(c), 3) for c in meds_val]
            feat_text = [(items[items['itemid'] == f]['label']).to_string(index=False) for f in feat]
            meds_text = '; '.join(f"{mean_val} of {feat_label}" for mean_val, feat_label in zip(meds_mean, feat_text))
            meds_text = f"The mean amounts of medications administered during the episode were: {meds_text}. "
        else:
            meds_text = 'No medications were administered. '
    else:
        meds_text = ''

    #proc
    if feat_proc:  
        proc = data['Proc']
        if proc:
            feat=proc.keys()
            feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
            template = 'The procedures performed were: {}. '
            proc_text= template.format('; '.join(feat_text))
        else:
            proc_text='No procedures were performed. '
    else:
        proc_text=''
    
    #out
    if feat_out:  
        out = data['Out']
        if out:
            feat=out.keys()
            feat_text = [(items[items['itemid']==f]['label']).to_string(index=False) for f in feat]
            template ='The outputs collected were: {}.'
            out_text = template.format('; '.join(feat_text))
        else:
            out_text='No outputs were collected.'
    else:
        out_text=''

    return cond_text,chart_text,meds_text,proc_text,out_text