Datasets:
File size: 3,003 Bytes
64ca842 91e77ef 5f3af00 64ca842 91e77ef 352c6f5 c464934 352c6f5 f1f37e1 352c6f5 f1f37e1 c464934 f1f37e1 c464934 f1f37e1 c464934 f1f37e1 352c6f5 c464934 f1f37e1 c464934 f1f37e1 c464934 f1f37e1 352c6f5 f1f37e1 c464934 f1f37e1 c464934 f1f37e1 91e77ef 5f3af00 56def96 56acbda 5f3af00 56acbda 5f3af00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- en
- uk
- ru
- de
- zh
- am
- ar
- hi
- es
license: openrail++
size_categories:
- 1K<n<10K
task_categories:
- text-generation
dataset_info:
features:
- name: toxic_sentence
dtype: string
- name: neutral_sentence
dtype: string
splits:
- name: zh
num_bytes: 79089
num_examples: 400
- name: es
num_bytes: 56826
num_examples: 400
- name: ru
num_bytes: 89449
num_examples: 400
- name: ar
num_bytes: 85231
num_examples: 400
- name: hi
num_bytes: 107516
num_examples: 400
- name: uk
num_bytes: 78082
num_examples: 400
- name: de
num_bytes: 86818
num_examples: 400
- name: am
num_bytes: 133489
num_examples: 400
- name: en
num_bytes: 47435
num_examples: 400
download_size: 489123
dataset_size: 763935
configs:
- config_name: default
data_files:
- split: zh
path: data/zh-*
- split: es
path: data/es-*
- split: ru
path: data/ru-*
- split: ar
path: data/ar-*
- split: hi
path: data/hi-*
- split: uk
path: data/uk-*
- split: de
path: data/de-*
- split: am
path: data/am-*
- split: en
path: data/en-*
---
**MultiParaDetox**
This is the multilingual parallel dataset for text detoxification prepared for [CLEF TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) shared task.
For each of 9 languages, we collected 1k pairs of toxic<->detoxified instances splitted into two parts: dev (400 pairs) and test (600 pairs).
**Now, only dev set toxic sentences are released. Dev set references and test set toxic sentences will be released later with the test phase of the competition!**
The list of the sources for the original toxic sentences:
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
* Ukrainian: [Ukrainian Twitter texts](https://github.com/saganoren/ukr-twi-corpus)
* Spanish: [Detecting and Monitoring Hate Speech in Twitter](https://www.mdpi.com/1424-8220/19/21/4654), [Detoxis](https://rdcu.be/dwhxH), [RoBERTuito: a pre-trained language model for social media text in Spanish](https://aclanthology.org/2022.lrec-1.785/)
* German: [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true) |