Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 3,003 Bytes
64ca842
91e77ef
 
 
 
 
 
 
 
 
5f3af00
64ca842
91e77ef
 
 
 
352c6f5
 
c464934
352c6f5
f1f37e1
 
352c6f5
f1f37e1
 
 
 
 
c464934
 
f1f37e1
 
 
 
 
 
 
c464934
 
f1f37e1
c464934
 
f1f37e1
352c6f5
c464934
f1f37e1
c464934
f1f37e1
 
c464934
f1f37e1
 
352c6f5
 
 
f1f37e1
 
 
 
c464934
 
f1f37e1
 
 
 
c464934
 
 
 
 
 
f1f37e1
 
91e77ef
5f3af00
 
 
56def96
 
56acbda
5f3af00
 
 
 
 
56acbda
5f3af00
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- en
- uk
- ru
- de
- zh
- am
- ar
- hi
- es
license: openrail++
size_categories:
- 1K<n<10K
task_categories:
- text-generation
dataset_info:
  features:
  - name: toxic_sentence
    dtype: string
  - name: neutral_sentence
    dtype: string
  splits:
  - name: zh
    num_bytes: 79089
    num_examples: 400
  - name: es
    num_bytes: 56826
    num_examples: 400
  - name: ru
    num_bytes: 89449
    num_examples: 400
  - name: ar
    num_bytes: 85231
    num_examples: 400
  - name: hi
    num_bytes: 107516
    num_examples: 400
  - name: uk
    num_bytes: 78082
    num_examples: 400
  - name: de
    num_bytes: 86818
    num_examples: 400
  - name: am
    num_bytes: 133489
    num_examples: 400
  - name: en
    num_bytes: 47435
    num_examples: 400
  download_size: 489123
  dataset_size: 763935
configs:
- config_name: default
  data_files:
  - split: zh
    path: data/zh-*
  - split: es
    path: data/es-*
  - split: ru
    path: data/ru-*
  - split: ar
    path: data/ar-*
  - split: hi
    path: data/hi-*
  - split: uk
    path: data/uk-*
  - split: de
    path: data/de-*
  - split: am
    path: data/am-*
  - split: en
    path: data/en-*
---
**MultiParaDetox**

This is the multilingual parallel dataset for text detoxification prepared for [CLEF TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) shared task.
For each of 9 languages, we collected 1k pairs of toxic<->detoxified instances splitted into two parts: dev (400 pairs) and test (600 pairs). 

**Now, only dev set toxic sentences are released. Dev set references and test set toxic sentences will be released later with the test phase of the competition!**

The list of the sources for the original toxic sentences:
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
* Ukrainian: [Ukrainian Twitter texts](https://github.com/saganoren/ukr-twi-corpus)
* Spanish: [Detecting and Monitoring Hate Speech in Twitter](https://www.mdpi.com/1424-8220/19/21/4654), [Detoxis](https://rdcu.be/dwhxH), [RoBERTuito: a pre-trained language model for social media text in Spanish](https://aclanthology.org/2022.lrec-1.785/)
* German: [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)