File size: 15,624 Bytes
e1bb252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
#!/bin/bash
#SBATCH --job-name=ckpts
#SBATCH --ntasks=1 # number of MP tasks
#SBATCH --nodes=1
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=ajs@cpu
#SBATCH --partition=cpu_p1
set -x -e
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
conda activate muennighoffmodelconv
CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0/checkpoints/tasky
#CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0/checkpoints/p31lossseq
CKPTS=(
global_step250
global_step500
global_step750
global_step1000
global_step1250
)
EXAMPLE_CKPT=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmixnewcodelonglossseq
DUMP_PATH=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/6b3t0
OUT_PREFIX=tasky_
#OUT_PREFIX=p31lossseq
TP=1
### CONVERT ###
for i in {0..6}; do
CKPT=${CKPTS[$i]}
echo "$i"
echo "Running $CKPT"
OUTPUTCKPT=$DUMP_PATH/"$OUT_PREFIX$CKPT"
python $six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/transformers_clone/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path $OUTPUTCKPT --bloom_checkpoint_path $CKPT_PATH/$CKPT --pretraining_tp $TP --bloom_config_file $EXAMPLE_CKPT/config.json
# Copy tokenizer.json etc
cp -r $EXAMPLE_CKPT/*.json $OUTPUTCKPT/
eval_script="./eval_$i.slurm"
cat <<EOT > $eval_script
#!/bin/bash
#SBATCH --job-name=evaluate_t0
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=8 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:1 # number of gpus
#SBATCH --constraint=a100
#SBATCH --time 5:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=ajs@a100
#SBATCH --array=0-168
set -x -e
source $six_ALL_CCFRWORK/start-py38-pt111
conda activate thomas_t_zero_evaluation
CHECKPOINT_PATH=$OUTPUTCKPT
WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
pushd "\$WORKDIR"
OUTPUT_DIR="\$CHECKPOINT_PATH/evaluation"
mkdir -p "\$OUTPUT_DIR"
# Validation
DATASETS_AND_CONFIGS_VAL=(
head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
head_qa,en,en,"multiple_choice_q_and_a_en",validation
head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
head_qa,en,en,"multiple_choice_a_and_q_en",validation
head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
head_qa,es,en,"multiple_choice_q_and_a_en",validation
head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
head_qa,es,en,"multiple_choice_a_and_q_en",validation
climate_fever,None,None,"first_evidence_and_claim_itemization",test
climate_fever,None,None,"claim_and_all_supporting_evidences",test
climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
climate_fever,None,None,"third_evidence_claim_pair",test
climate_fever,None,None,"second_evidence_and_claim_itemization",test
codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
aqua_rat,raw,None,"select_the_best_option",validation
aqua_rat,raw,None,"answer_quiz",validation
aqua_rat,raw,None,"Answer questions from options",validation
commonsense_qa,None,None,"answer_given_question_without_options",validation
commonsense_qa,None,None,"question_answering",validation
commonsense_qa,None,None,"most_suitable_answer",validation
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
art,None,None,"choose_hypothesis_options",validation
art,None,None,"choose_hypothesis_believable",validation
art,None,None,"choose_hypothesis",validation
art,None,None,"choose_hypothesis_desc",validation
art,None,None,"choose_hypothesis_likely",validation
banking77,None,None,"help_page_topic",test
banking77,None,None,"direct_to_which_department",test
banking77,None,None,"rephrase_as_banking_term",test
blbooksgenre,title_genre_classifiction,None,"multi-choice",train
blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
blbooksgenre,title_genre_classifiction,None,"classify",train
blimp,adjunct_island,None,"grammatical_between_1_2",train
blimp,adjunct_island,None,"grammatical_between_A_B",train
blimp,adjunct_island,None,"grammatical_which_one_1_2",train
blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
blimp,adjunct_island,None,"single_sentence_good_yes_no",train
conv_ai_3,None,None,"clarification_needed",validation
conv_ai_3,None,None,"score_give_number",validation
conv_ai_3,None,None,"ambiguous",validation
conv_ai_3,None,None,"directly_answer",validation
conv_ai_3,None,None,"score_how_much",validation
craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
craigslist_bargains,None,None,"good deal for seller no list price",validation
craigslist_bargains,None,None,"good deal for seller",validation
craigslist_bargains,None,None,"best deal",validation
ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
emo,None,None,"persons_describe",validation
emo,None,None,"final_message",validation
emo,None,None,"what_emotion_do_you_think",validation
emo,None,None,"emotional_state",validation
emo,None,None,"dialogue_between",validation
emotion,None,None,"choose_the_best_emotion_label",test
emotion,None,None,"reply_with_emoation_label",test
emotion,None,None,"answer_with_class_label",test
emotion,None,None,"answer_question_with_emotion_label",test
financial_phrasebank,sentences_allagree,None,"share_price_option",train
financial_phrasebank,sentences_allagree,None,"sentiment",train
financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
financial_phrasebank,sentences_allagree,None,"complementary_industries",train
financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
glue,cola,None,"Make sense yes no",validation
glue,cola,None,"is_this_correct",validation
glue,cola,None,"editing",validation
glue,cola,None,"Following sentence acceptable",validation
glue,cola,None,"Previous sentence acceptable",validation
glue,sst2,None,"positive negative after",validation
glue,sst2,None,"review",validation
glue,sst2,None,"said",validation
glue,sst2,None,"following positive negative",validation
glue,sst2,None,"happy or mad",validation
health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
health_fact,None,None,"claim_explanation_classification",validation
health_fact,None,None,"claim_veracity_classification_tell_me",validation
hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
hlgd,None,None,"is_same_event_interrogative_talk",validation
hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
hlgd,None,None,"is_same_event_refer",validation
hlgd,None,None,"is_same_event_editor_asks",validation
hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
liar,None,None,"Given statement guess category",validation
lince,sa_spaeng,None,"original poster expressed sentiment",validation
lince,sa_spaeng,None,"sentiment trying to express",validation
lince,sa_spaeng,None,"express sentiment",validation
lince,sa_spaeng,None,"negation template",validation
lince,sa_spaeng,None,"the author seem",validation
math_qa,None,None,"choose_correct_og",test
math_qa,None,None,"pick_the_correct",test
math_qa,None,None,"first_choice_then_problem",test
math_qa,None,None,"problem_set_type",test
math_qa,None,None,"gre_problem",test
movie_rationales,None,None,"Standard binary sentiment analysis",validation
movie_rationales,None,None,"Evidences sentiment classification",validation
movie_rationales,None,None,"Evidences + review",validation
movie_rationales,None,None,"Generate evidences and sentiment",validation
mwsc,None,None,"in-the-sentence-question-first",validation
mwsc,None,None,"what-think",validation
mwsc,None,None,"in-the-sentence",validation
mwsc,None,None,"options-or",validation
mwsc,None,None,"is-correct",validation
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
poem_sentiment,None,None,"question_answer_format",validation
poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
poem_sentiment,None,None,"most_appropriate_sentiment",validation
onestop_english,None,None,"esl_context",train
onestop_english,None,None,"ara_context",train
onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
onestop_english,None,None,"esl_variation",train
onestop_english,None,None,"assess",train
pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
riddle_sense,None,None,"most_suitable_answer",validation
riddle_sense,None,None,"answer_given_question_without_options",validation
riddle_sense,None,None,"question_to_answer_index",validation
riddle_sense,None,None,"question_answering",validation
scicite,None,None,"Classify intent w/section (select choice)",validation
scicite,None,None,"Classify intent (choices first)",validation
scicite,None,None,"Classify intent (select choice)",validation
scicite,None,None,"Classify intent",validation
scicite,None,None,"can_describe",validation
selqa,answer_selection_analysis,None,"is-he-talking-about",validation
selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
selqa,answer_selection_analysis,None,"make-sense-rand",validation
selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
snips_built_in_intents,None,None,"voice_intent",train
snips_built_in_intents,None,None,"categorize_query",train
snips_built_in_intents,None,None,"intent_query",train
snips_built_in_intents,None,None,"categorize_query_brief",train
snips_built_in_intents,None,None,"query_intent",train
)
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS_VAL[\$SLURM_ARRAY_TASK_ID]}"
echo "\$ARGUMENT"
# Run T0 evaluation
# For PrefixLM add --prefixlm
IFS=',' read dataset_name dataset_config_name template_config_name template_name split <<< "\${DATASET_AND_CONFIG}"
python t-zero/evaluation/run_eval.py \
--dataset_name "\$dataset_name" \
--dataset_config_name "\$dataset_config_name" \
--template_config_name "\$template_config_name" \
--template_name "\$template_name" \
--split "\$split" \
--model_name_or_path "\$CHECKPOINT_PATH" \
--output_dir "\$OUTPUT_DIR" \
--per_device_eval_batch_size 4 \
--max_length 2048 \
--dtype float16
EOT
sbatch $eval_script
lm_eval_script="./lm_eval_$i.slurm"
cat <<EOT > $lm_eval_script
#!/bin/bash
#SBATCH --job-name=lmeval
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=8 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:1 # number of gpus
#SBATCH --constraint=a100
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=ajs@a100
#SBATCH --array=0-12
set -x -e
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
conda activate muennighofflmevalgen
echo "START TIME: $(date)"
# defining the right environment variables
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
export TOKENIZERS_PARALLELISM=false
# Converted transformer checkpoint
MODEL_CKPT=$OUTPUTCKPT
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness
DATASETS_AND_CONFIGS=(
wmt14_fr_en,fr-en,"version-en-fr-target"
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
wmt14_fr_en,fr-en,"xglm-en-fr-target"
wmt14_fr_en,fr-en,"gpt3-en-fr"
wmt14_fr_en,fr-en,"version-fr-en-target"
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
wmt14_fr_en,fr-en,"xglm-fr-en-target"
wmt14_fr_en,fr-en,"gpt3-fr-en"
wmt14_hi_en,hi-en,"version-en-hi-target"
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
wmt14_hi_en,hi-en,"xglm-en-hi-target"
wmt14_hi_en,hi-en,"gpt-3-en-hi-target"
wmt14_hi_en,hi-en,"version-hi-en-target"
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
wmt14_hi_en,hi-en,"xglm-hi-en-target"
wmt14_hi_en,hi-en,"gpt-3-hi-en-target"
mlsum_es,"es","layman_summ_es"
mlsum_es,"es","palm_prompt"
mlsum_es,"es","summarise_this_in_es_few_sentences"
)
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS[\$SLURM_ARRAY_TASK_ID]}"
echo "\$ARGUMENT"
IFS=',' read dataset_name lang template_name <<< "\${DATASET_AND_CONFIG}"
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
python main.py \
--model_api_name 'hf-causal' \
--model_args "pretrained=\$MODEL_CKPT,use_accelerate=True,tokenizer=\$MODEL_CKPT,dtype=float16" \
--device cuda \
--batch_size 16 \
--no_tracking \
--task_name "\$dataset_name" \
--template_names "\$template_name" \
--bootstrap_iters 10 \
--limit 3000
mkdir -p "$OUTPUTCKPT/evaluation/\$dataset_name"
mv "outputs/*$CKPT*\$dataset_name*" "$OUTPUTCKPT/evaluation/\$dataset_name/"
echo "END TIME: $(date)"
EOT
sbatch $lm_eval_script
done
|