File size: 15,624 Bytes
e1bb252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/bin/bash
#SBATCH --job-name=ckpts
#SBATCH --ntasks=1                   # number of MP tasks
#SBATCH --nodes=1
#SBATCH --cpus-per-task=40           # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --time=20:00:00             # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out          # output file name
#SBATCH --account=ajs@cpu
#SBATCH --partition=cpu_p1

set -x -e

source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
conda activate muennighoffmodelconv

CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0/checkpoints/tasky
#CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0/checkpoints/p31lossseq

CKPTS=(
global_step250
global_step500
global_step750
global_step1000
global_step1250
)
EXAMPLE_CKPT=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmixnewcodelonglossseq
DUMP_PATH=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/6b3t0
OUT_PREFIX=tasky_
#OUT_PREFIX=p31lossseq

TP=1

### CONVERT ###


for i in {0..6}; do
CKPT=${CKPTS[$i]}
echo "$i"
echo "Running $CKPT"

OUTPUTCKPT=$DUMP_PATH/"$OUT_PREFIX$CKPT"
python $six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/transformers_clone/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path $OUTPUTCKPT --bloom_checkpoint_path $CKPT_PATH/$CKPT --pretraining_tp $TP --bloom_config_file $EXAMPLE_CKPT/config.json

# Copy tokenizer.json etc
cp -r $EXAMPLE_CKPT/*.json $OUTPUTCKPT/

eval_script="./eval_$i.slurm"
cat <<EOT > $eval_script
#!/bin/bash
#SBATCH --job-name=evaluate_t0
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=8           # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --gres=gpu:1                 # number of gpus
#SBATCH --constraint=a100
#SBATCH --time 5:00:00             # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out           # output file name
#SBATCH --account=ajs@a100
#SBATCH --array=0-168

set -x -e

source $six_ALL_CCFRWORK/start-py38-pt111
conda activate thomas_t_zero_evaluation

CHECKPOINT_PATH=$OUTPUTCKPT

WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
pushd "\$WORKDIR"
OUTPUT_DIR="\$CHECKPOINT_PATH/evaluation"
mkdir -p "\$OUTPUT_DIR"

# Validation
DATASETS_AND_CONFIGS_VAL=(
head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
head_qa,en,en,"multiple_choice_q_and_a_en",validation
head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
head_qa,en,en,"multiple_choice_a_and_q_en",validation
head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
head_qa,es,en,"multiple_choice_q_and_a_en",validation
head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
head_qa,es,en,"multiple_choice_a_and_q_en",validation
climate_fever,None,None,"first_evidence_and_claim_itemization",test
climate_fever,None,None,"claim_and_all_supporting_evidences",test
climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
climate_fever,None,None,"third_evidence_claim_pair",test
climate_fever,None,None,"second_evidence_and_claim_itemization",test
codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
aqua_rat,raw,None,"select_the_best_option",validation
aqua_rat,raw,None,"answer_quiz",validation
aqua_rat,raw,None,"Answer questions from options",validation
commonsense_qa,None,None,"answer_given_question_without_options",validation
commonsense_qa,None,None,"question_answering",validation
commonsense_qa,None,None,"most_suitable_answer",validation
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
art,None,None,"choose_hypothesis_options",validation
art,None,None,"choose_hypothesis_believable",validation
art,None,None,"choose_hypothesis",validation
art,None,None,"choose_hypothesis_desc",validation
art,None,None,"choose_hypothesis_likely",validation
banking77,None,None,"help_page_topic",test
banking77,None,None,"direct_to_which_department",test
banking77,None,None,"rephrase_as_banking_term",test
blbooksgenre,title_genre_classifiction,None,"multi-choice",train
blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
blbooksgenre,title_genre_classifiction,None,"classify",train
blimp,adjunct_island,None,"grammatical_between_1_2",train
blimp,adjunct_island,None,"grammatical_between_A_B",train
blimp,adjunct_island,None,"grammatical_which_one_1_2",train
blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
blimp,adjunct_island,None,"single_sentence_good_yes_no",train
conv_ai_3,None,None,"clarification_needed",validation
conv_ai_3,None,None,"score_give_number",validation
conv_ai_3,None,None,"ambiguous",validation
conv_ai_3,None,None,"directly_answer",validation
conv_ai_3,None,None,"score_how_much",validation
craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
craigslist_bargains,None,None,"good deal for seller no list price",validation
craigslist_bargains,None,None,"good deal for seller",validation
craigslist_bargains,None,None,"best deal",validation
ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
emo,None,None,"persons_describe",validation
emo,None,None,"final_message",validation
emo,None,None,"what_emotion_do_you_think",validation
emo,None,None,"emotional_state",validation
emo,None,None,"dialogue_between",validation
emotion,None,None,"choose_the_best_emotion_label",test
emotion,None,None,"reply_with_emoation_label",test
emotion,None,None,"answer_with_class_label",test
emotion,None,None,"answer_question_with_emotion_label",test
financial_phrasebank,sentences_allagree,None,"share_price_option",train
financial_phrasebank,sentences_allagree,None,"sentiment",train
financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
financial_phrasebank,sentences_allagree,None,"complementary_industries",train
financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
glue,cola,None,"Make sense yes no",validation
glue,cola,None,"is_this_correct",validation
glue,cola,None,"editing",validation
glue,cola,None,"Following sentence acceptable",validation
glue,cola,None,"Previous sentence acceptable",validation
glue,sst2,None,"positive negative after",validation
glue,sst2,None,"review",validation
glue,sst2,None,"said",validation
glue,sst2,None,"following positive negative",validation
glue,sst2,None,"happy or mad",validation
health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
health_fact,None,None,"claim_explanation_classification",validation
health_fact,None,None,"claim_veracity_classification_tell_me",validation
hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
hlgd,None,None,"is_same_event_interrogative_talk",validation
hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
hlgd,None,None,"is_same_event_refer",validation
hlgd,None,None,"is_same_event_editor_asks",validation
hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
liar,None,None,"Given statement guess category",validation
lince,sa_spaeng,None,"original poster expressed sentiment",validation
lince,sa_spaeng,None,"sentiment trying to express",validation
lince,sa_spaeng,None,"express sentiment",validation
lince,sa_spaeng,None,"negation template",validation
lince,sa_spaeng,None,"the author seem",validation
math_qa,None,None,"choose_correct_og",test
math_qa,None,None,"pick_the_correct",test
math_qa,None,None,"first_choice_then_problem",test
math_qa,None,None,"problem_set_type",test
math_qa,None,None,"gre_problem",test
movie_rationales,None,None,"Standard binary sentiment analysis",validation
movie_rationales,None,None,"Evidences sentiment classification",validation
movie_rationales,None,None,"Evidences + review",validation
movie_rationales,None,None,"Generate evidences and sentiment",validation
mwsc,None,None,"in-the-sentence-question-first",validation
mwsc,None,None,"what-think",validation
mwsc,None,None,"in-the-sentence",validation
mwsc,None,None,"options-or",validation
mwsc,None,None,"is-correct",validation
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
poem_sentiment,None,None,"question_answer_format",validation
poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
poem_sentiment,None,None,"most_appropriate_sentiment",validation
onestop_english,None,None,"esl_context",train
onestop_english,None,None,"ara_context",train
onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
onestop_english,None,None,"esl_variation",train
onestop_english,None,None,"assess",train
pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
riddle_sense,None,None,"most_suitable_answer",validation
riddle_sense,None,None,"answer_given_question_without_options",validation
riddle_sense,None,None,"question_to_answer_index",validation
riddle_sense,None,None,"question_answering",validation
scicite,None,None,"Classify intent w/section (select choice)",validation
scicite,None,None,"Classify intent (choices first)",validation
scicite,None,None,"Classify intent (select choice)",validation
scicite,None,None,"Classify intent",validation
scicite,None,None,"can_describe",validation
selqa,answer_selection_analysis,None,"is-he-talking-about",validation
selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
selqa,answer_selection_analysis,None,"make-sense-rand",validation
selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
snips_built_in_intents,None,None,"voice_intent",train
snips_built_in_intents,None,None,"categorize_query",train
snips_built_in_intents,None,None,"intent_query",train
snips_built_in_intents,None,None,"categorize_query_brief",train
snips_built_in_intents,None,None,"query_intent",train
)

DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS_VAL[\$SLURM_ARRAY_TASK_ID]}"
echo "\$ARGUMENT"

# Run T0 evaluation
# For PrefixLM add --prefixlm
IFS=',' read dataset_name dataset_config_name template_config_name template_name split <<< "\${DATASET_AND_CONFIG}"
python t-zero/evaluation/run_eval.py \
        --dataset_name "\$dataset_name" \
        --dataset_config_name "\$dataset_config_name" \
        --template_config_name "\$template_config_name" \
        --template_name "\$template_name" \
        --split "\$split" \
        --model_name_or_path "\$CHECKPOINT_PATH" \
        --output_dir "\$OUTPUT_DIR" \
        --per_device_eval_batch_size 4 \
        --max_length 2048 \
        --dtype float16
EOT

sbatch $eval_script


lm_eval_script="./lm_eval_$i.slurm"
cat <<EOT > $lm_eval_script
#!/bin/bash
#SBATCH --job-name=lmeval
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=8           # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --gres=gpu:1                 # number of gpus
#SBATCH --constraint=a100
#SBATCH --time 20:00:00             # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out           # output file name
#SBATCH --account=ajs@a100
#SBATCH --array=0-12

set -x -e

source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
conda activate muennighofflmevalgen

echo "START TIME: $(date)"

# defining the right environment variables
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
export TOKENIZERS_PARALLELISM=false

# Converted transformer checkpoint
MODEL_CKPT=$OUTPUTCKPT

cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness


DATASETS_AND_CONFIGS=(
wmt14_fr_en,fr-en,"version-en-fr-target"
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
wmt14_fr_en,fr-en,"xglm-en-fr-target"
wmt14_fr_en,fr-en,"gpt3-en-fr"
wmt14_fr_en,fr-en,"version-fr-en-target"
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
wmt14_fr_en,fr-en,"xglm-fr-en-target"
wmt14_fr_en,fr-en,"gpt3-fr-en"
wmt14_hi_en,hi-en,"version-en-hi-target"
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
wmt14_hi_en,hi-en,"xglm-en-hi-target"
wmt14_hi_en,hi-en,"gpt-3-en-hi-target"
wmt14_hi_en,hi-en,"version-hi-en-target"
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
wmt14_hi_en,hi-en,"xglm-hi-en-target"
wmt14_hi_en,hi-en,"gpt-3-hi-en-target"
mlsum_es,"es","layman_summ_es"
mlsum_es,"es","palm_prompt"
mlsum_es,"es","summarise_this_in_es_few_sentences"
)

DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS[\$SLURM_ARRAY_TASK_ID]}"
echo "\$ARGUMENT"

IFS=',' read dataset_name lang template_name <<< "\${DATASET_AND_CONFIG}"

# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
python main.py \
    --model_api_name 'hf-causal' \
    --model_args "pretrained=\$MODEL_CKPT,use_accelerate=True,tokenizer=\$MODEL_CKPT,dtype=float16" \
    --device cuda \
    --batch_size 16 \
    --no_tracking \
    --task_name "\$dataset_name" \
    --template_names "\$template_name" \
    --bootstrap_iters 10 \
    --limit 3000

mkdir -p "$OUTPUTCKPT/evaluation/\$dataset_name"
mv "outputs/*$CKPT*\$dataset_name*" "$OUTPUTCKPT/evaluation/\$dataset_name/"

echo "END TIME: $(date)"
EOT

sbatch $lm_eval_script


done