File size: 5,998 Bytes
80b7065 cf0255a 80b7065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
#!/bin/bash
#SBATCH --job-name=tr13f-6b3-mtf-tasky
#SBATCH --partition=gpu_p5
#SBATCH --constraint=a100
#SBATCH --qos=qos_gpu-gc # up to 100h
#SBATCH --nodes=8
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=64 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:8 # number of gpus
#SBATCH --time 12:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=ajs@a100
set -x -e
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
echo "START TIME: $(date)"
variant=tasky
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant
REPO_PATH=$DATA_OUTPUT_PATH/tr13f-6B3-ml-t0-logs
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant
LOGS_PATH=$REPO_PATH/logs/$variant
mkdir -p $LOGS_PATH
mkdir -p $TENSORBOARD_PATH
MEGATRON_DEEPSPEED_REPO=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0/megdslossseq/Megatron-DeepSpeed
cd $MEGATRON_DEEPSPEED_REPO
KILL_SWITCH_PATH=$MEGATRON_DEEPSPEED_REPO/kill-switch-tr13f-6B3-mtf
TRAIN_DATA_PATH=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed/data/tasky_train.txt
VALID_DATA_PATH=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed/data/p31_validation.txt
TOKENIZER_NAME_OR_PATH=bigscience/tokenizer
# defining the right environment variables
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
# testing for potential faulty nodes
# srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"'
# so processes know who to talk to
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6001
GPUS_PER_NODE=8
NNODES=$SLURM_NNODES
PP_SIZE=1
TP_SIZE=1
# T0 paper:
# ...truncate input and target sequences to 1024 and 256 tokens...
# ...use a batch size of 1024 sequences ... 2^20 total input tokens per batch...
# We use 2048 total tokens and 512 batch size = 2**20
MICRO_BATCH_SIZE=4
GLOBAL_BATCH_SIZE=2048
NLAYERS=30
NHIDDEN=4096
NHEADS=32
SEQ_LEN=2048
SAVE_INTERVAL=250
TRAIN_SAMPLES=6_348_800
# T0 paper:
# "...we use a learning rate of 1e-3..."
# However, they use Adafactor, which adapts the LR
# For Adam we likely want a lower one
# FLAN:
# "...decay of 1e-4..""
# Uncomment for the first step
# --no-load-optim \
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--adam-eps 1e-8 \
--lr 2e-5 \
--lr-decay-style constant \
--lr-warmup-samples 0 \
--clip-grad 1.0 \
--weight-decay 1e-4 \
--no-load-optim \
"
# for 20h 1190, for 100h 5990
# --exit-duration-in-mins 1190 \
EXIT_OPTS=" \
--exit-duration-in-mins 5990 \
"
GPT_ARGS=" \
--pp-partition-method 'type:transformer|embedding' \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples $TRAIN_SAMPLES \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
--init-method-std 0.0048 \
--embed-layernorm \
--fp16 \
--seed 42 \
--position-embedding-type alibi \
--checkpoint-activations \
--abort-on-unmet-fused-kernel-constraints \
--kill-switch-path $KILL_SWITCH_PATH \
--pad-vocab-size-to 250880 \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval $SAVE_INTERVAL \
--eval-interval 250 \
--eval-iters 50 \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.run \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
--rdzv_backend c10d \
--max_restarts 0 \
--tee 3 \
"
export CMD=" \
`pwd`/finetune_t0.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--train-weighted-split-paths-path $TRAIN_DATA_PATH \
--valid-weighted-split-paths-path $VALID_DATA_PATH \
--dataloader-type single \
--data-impl mmap \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# do not remove or the training will hang and nodes will be lost w/o this workaround
export CUDA_LAUNCH_BLOCKING=1
# hide duplicated errors using this hack - will be properly fixed in pt-1.12
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json
clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)" |