File size: 5,998 Bytes
80b7065
cf0255a
80b7065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/bin/bash
#SBATCH --job-name=tr13f-6b3-mtf-tasky
#SBATCH --partition=gpu_p5
#SBATCH --constraint=a100
#SBATCH --qos=qos_gpu-gc             # up to 100h
#SBATCH --nodes=8
#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=64           # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --gres=gpu:8                 # number of gpus
#SBATCH --time 12:00:00             # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out           # output file name
#SBATCH --account=ajs@a100

set -x -e

source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
echo "START TIME: $(date)"

variant=tasky

DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant
REPO_PATH=$DATA_OUTPUT_PATH/tr13f-6B3-ml-t0-logs
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant
LOGS_PATH=$REPO_PATH/logs/$variant
mkdir -p $LOGS_PATH
mkdir -p $TENSORBOARD_PATH

MEGATRON_DEEPSPEED_REPO=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0/megdslossseq/Megatron-DeepSpeed
cd $MEGATRON_DEEPSPEED_REPO

KILL_SWITCH_PATH=$MEGATRON_DEEPSPEED_REPO/kill-switch-tr13f-6B3-mtf

TRAIN_DATA_PATH=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed/data/tasky_train.txt
VALID_DATA_PATH=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed/data/p31_validation.txt
TOKENIZER_NAME_OR_PATH=bigscience/tokenizer

# defining the right environment variables
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1

# testing for potential faulty nodes
# srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"'

# so processes know who to talk to
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6001

GPUS_PER_NODE=8
NNODES=$SLURM_NNODES

PP_SIZE=1
TP_SIZE=1

# T0 paper:
# ...truncate input and target sequences to 1024 and 256 tokens...
# ...use a batch size of 1024 sequences ... 2^20 total input tokens per batch...
# We use 2048 total tokens and 512 batch size = 2**20
MICRO_BATCH_SIZE=4
GLOBAL_BATCH_SIZE=2048

NLAYERS=30
NHIDDEN=4096
NHEADS=32
SEQ_LEN=2048

SAVE_INTERVAL=250

TRAIN_SAMPLES=6_348_800

# T0 paper:
# "...we use a learning rate of 1e-3..."
# However, they use Adafactor, which adapts the LR
# For Adam we likely want a lower one
# FLAN:
# "...decay of 1e-4..""

# Uncomment for the first step
# --no-load-optim \
OPTIMIZER_ARGS=" \
    --optimizer adam \
    --adam-beta1 0.9 \
    --adam-beta2 0.95 \
    --adam-eps 1e-8 \
    --lr 2e-5 \
    --lr-decay-style constant \
    --lr-warmup-samples 0 \
    --clip-grad 1.0 \
    --weight-decay 1e-4 \
    --no-load-optim \
    "
# for 20h 1190, for 100h 5990
#    --exit-duration-in-mins 1190 \
EXIT_OPTS=" \
    --exit-duration-in-mins 5990 \
    "

GPT_ARGS=" \
    --pp-partition-method 'type:transformer|embedding' \
    --num-layers $NLAYERS \
    --hidden-size $NHIDDEN \
    --num-attention-heads $NHEADS \
    --seq-length $SEQ_LEN \
    --max-position-embeddings $SEQ_LEN \
    --micro-batch-size $MICRO_BATCH_SIZE \
    --global-batch-size $GLOBAL_BATCH_SIZE \
    --train-samples $TRAIN_SAMPLES \
    --tokenizer-type PretrainedFromHF \
    --tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
    --init-method-std 0.0048 \
    --embed-layernorm \
    --fp16 \
    --seed 42 \
    --position-embedding-type alibi \
    --checkpoint-activations \
    --abort-on-unmet-fused-kernel-constraints \
    --kill-switch-path $KILL_SWITCH_PATH \
    --pad-vocab-size-to 250880 \
    $OPTIMIZER_ARGS \
    $EXIT_OPTS \
    "

OUTPUT_ARGS=" \
    --log-interval 1 \
    --save-interval $SAVE_INTERVAL \
    --eval-interval 250 \
    --eval-iters 50 \
    --tensorboard-dir $TENSORBOARD_PATH \
    --tensorboard-queue-size 5 \
    --log-timers-to-tensorboard \
    --log-batch-size-to-tensorboard \
    --log-validation-ppl-to-tensorboard \
    "

ZERO_STAGE=1

config_json="./ds_config.$SLURM_JOBID.json"

# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
  "train_batch_size": $GLOBAL_BATCH_SIZE,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE
  },
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 500,
    "hysteresis": 2,
    "min_loss_scale": 1,
    "initial_scale_power": 12
  },
  "steps_per_print": 2000,
  "wall_clock_breakdown": false
}
EOT


DEEPSPEED_ARGS=" \
    --deepspeed \
    --deepspeed_config ${config_json} \
    --zero-stage ${ZERO_STAGE} \
    --deepspeed-activation-checkpointing \
    "

export LAUNCHER="python -u -m torch.distributed.run \
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
    --rdzv_backend c10d \
    --max_restarts 0 \
    --tee 3 \
    "

export CMD=" \
    `pwd`/finetune_t0.py \
    --tensor-model-parallel-size $TP_SIZE \
    --pipeline-model-parallel-size $PP_SIZE \
    $GPT_ARGS \
    $OUTPUT_ARGS \
    --save $CHECKPOINT_PATH \
    --load $CHECKPOINT_PATH \
    --train-weighted-split-paths-path $TRAIN_DATA_PATH \
    --valid-weighted-split-paths-path $VALID_DATA_PATH \
    --dataloader-type single \
    --data-impl mmap \
    --distributed-backend nccl \
     $DEEPSPEED_ARGS \
    "

echo $CMD

# do not remove or the training will hang and nodes will be lost w/o this workaround
export CUDA_LAUNCH_BLOCKING=1

# hide duplicated errors using this hack - will be properly fixed in pt-1.12
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json

clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt

echo "END TIME: $(date)"