File size: 8,522 Bytes
ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 429010a ab23e0b 68a9be1 99cc476 68a9be1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
language:
- en
size_categories:
- 10K<n<100K
task_categories:
- image-classification
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': red and white circle 20 kph speed limit
'1': red and white circle 30 kph speed limit
'2': red and white circle 50 kph speed limit
'3': red and white circle 60 kph speed limit
'4': red and white circle 70 kph speed limit
'5': red and white circle 80 kph speed limit
'6': end / de-restriction of 80 kph speed limit
'7': red and white circle 100 kph speed limit
'8': red and white circle 120 kph speed limit
'9': red and white circle red car and black car no passing
'10': red and white circle red truck and black car no passing
'11': red and white triangle road intersection warning
'12': white and yellow diamond priority road
'13': red and white upside down triangle yield right-of-way
'14': stop
'15': empty red and white circle
'16': red and white circle no truck entry
'17': red circle with white horizonal stripe no entry
'18': red and white triangle with exclamation mark warning
'19': red and white triangle with black left curve approaching warning
'20': red and white triangle with black right curve approaching warning
'21': red and white triangle with black double curve approaching warning
'22': red and white triangle rough / bumpy road warning
'23': red and white triangle car skidding / slipping warning
'24': red and white triangle with merging / narrow lanes warning
'25': red and white triangle with person digging / construction / road work
warning
'26': red and white triangle with traffic light approaching warning
'27': red and white triangle with person walking warning
'28': red and white triangle with child and person walking warning
'29': red and white triangle with bicyle warning
'30': red and white triangle with snowflake / ice warning
'31': red and white triangle with deer warning
'32': white circle with gray strike bar no speed limit
'33': blue circle with white right turn arrow mandatory
'34': blue circle with white left turn arrow mandatory
'35': blue circle with white forward arrow mandatory
'36': blue circle with white forward or right turn arrow mandatory
'37': blue circle with white forward or left turn arrow mandatory
'38': blue circle with white keep right arrow mandatory
'39': blue circle with white keep left arrow mandatory
'40': blue circle with white arrows indicating a traffic circle
'41': white circle with gray strike bar indicating no passing for cars has
ended
'42': white circle with gray strike bar indicating no passing for trucks
has ended
splits:
- name: train
num_bytes: 252930879.36
num_examples: 26640
- name: test
num_bytes: 104816357.02
num_examples: 12630
- name: contrast
num_bytes: 104816357.02
num_examples: 12630
- name: gaussian_noise
num_bytes: 104816357.02
num_examples: 12630
- name: impulse_noise
num_bytes: 104816357.02
num_examples: 12630
- name: jpeg_compression
num_bytes: 104816357.02
num_examples: 12630
- name: motion_blur
num_bytes: 104816357.02
num_examples: 12630
- name: pixelate
num_bytes: 39121740.4
num_examples: 12630
- name: spatter
num_bytes: 104816357.02
num_examples: 12630
download_size: 1027074522
dataset_size: 1025767118.8999999
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: contrast
path: data/contrast-*
- split: gaussian_noise
path: data/gaussian_noise-*
- split: impulse_noise
path: data/impulse_noise-*
- split: jpeg_compression
path: data/jpeg_compression-*
- split: motion_blur
path: data/motion_blur-*
- split: pixelate
path: data/pixelate-*
- split: spatter
path: data/spatter-*
---
# Dataset Card for German Traffic Sign Recognition Benchmark
This dataset contains images of 43 classes of traffic signs. It is intended for developing and benchmarking traffic sign recognition systems.
## Dataset Details
### Dataset Description
The German Traffic Sign Recognition Benchmark (GTSRB) is a multi-class classification dataset featuring 43 classes of traffic signs.
The images were cropped from a larger set of images to focus on the traffic sign and eliminate background.
Multiple data augmentations such as Gaussian noise, motion blur, contrast changes, etc. are provided as additional test sets to benchmark model robustness.
### Dataset Sources
- [Paper with code](https://paperswithcode.com/dataset/gtsrb)
## Uses
### Direct Use
```python
from datasets import load_dataset
dataset = load_dataset('tanganke/gtsrb')
```
## Dataset Structure
The dataset is provided in 9 splits, including training data and clean test data:
- train: 26,640 images
- test: 12,630 images
and 7 kinds of corrupted test datasets to evaluate the robustness:
- contrast: 12,630 contrast-adjusted test images
- gaussian_noise: 12,630 Gaussian noise augmented test images
- impulse_noise: 12,630 impulse noise augmented test images
- jpeg_compression: 12,630 JPEG-compressed test images
- motion_blur: 12,630 motion-blurred test images
- pixelate: 12,630 pixelated test images
- spatter: 12,630 spatter augmented test images
Each split contains 43 classes of traffic signs, with the class labels and names specified in the dataset metadata.
## Citation [optional]
You can use any of the provided BibTeX entries for your reference list:
```bibtex
@article{stallkampManVsComputer2012,
title = {Man vs. Computer: {{Benchmarking}} Machine Learning Algorithms for Traffic Sign Recognition},
shorttitle = {Man vs. Computer},
author = {Stallkamp, J. and Schlipsing, M. and Salmen, J. and Igel, C.},
year = {2012},
month = aug,
journal = {Neural Networks},
series = {Selected {{Papers}} from {{IJCNN}} 2011},
volume = {32},
pages = {323--332},
issn = {0893-6080},
doi = {10.1016/j.neunet.2012.02.016},
url = {https://www.sciencedirect.com/science/article/pii/S0893608012000457},
keywords = {Benchmarking,Convolutional neural networks,Machine learning,Traffic sign recognition}
}
@misc{yangAdaMergingAdaptiveModel2023,
title = {{{AdaMerging}}: {{Adaptive Model Merging}} for {{Multi-Task Learning}}},
shorttitle = {{{AdaMerging}}},
author = {Yang, Enneng and Wang, Zhenyi and Shen, Li and Liu, Shiwei and Guo, Guibing and Wang, Xingwei and Tao, Dacheng},
year = {2023},
month = oct,
number = {arXiv:2310.02575},
eprint = {2310.02575},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2310.02575},
url = {http://arxiv.org/abs/2310.02575},
archiveprefix = {arxiv},
keywords = {Computer Science - Computer Vision and Pattern Recognition,Computer Science - Machine Learning}
}
@misc{tangConcreteSubspaceLearning2023,
title = {Concrete {{Subspace Learning}} Based {{Interference Elimination}} for {{Multi-task Model Fusion}}},
author = {Tang, Anke and Shen, Li and Luo, Yong and Ding, Liang and Hu, Han and Du, Bo and Tao, Dacheng},
year = {2023},
month = dec,
number = {arXiv:2312.06173},
eprint = {2312.06173},
publisher = {arXiv},
url = {http://arxiv.org/abs/2312.06173},
archiveprefix = {arxiv},
copyright = {All rights reserved},
keywords = {Computer Science - Machine Learning}
}
@misc{tangMergingMultiTaskModels2024,
title = {Merging {{Multi-Task Models}} via {{Weight-Ensembling Mixture}} of {{Experts}}},
author = {Tang, Anke and Shen, Li and Luo, Yong and Yin, Nan and Zhang, Lefei and Tao, Dacheng},
year = {2024},
month = feb,
number = {arXiv:2402.00433},
eprint = {2402.00433},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2402.00433},
url = {http://arxiv.org/abs/2402.00433},
archiveprefix = {arxiv},
copyright = {All rights reserved},
keywords = {Computer Science - Computer Vision and Pattern Recognition,Computer Science - Machine Learning}
}
```
## Dataset Card Authors
Anke Tang
## Dataset Card Contact
[tang.anke@foxmail.com](mailto:tang.anke@foxmail.com) |