File size: 4,748 Bytes
a2358dc
 
b750b28
 
 
 
 
 
 
 
 
a2358dc
b750b28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dcc8a7
b750b28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: other
task_categories:
- text-classification
language:
- en
- ja
tags:
- code
size_categories:
- 1K<n<10K
---


# Dataset overview

This dataset identifies whether a GitHub repository description pertains to Japanese natural language processing (NLP).
The labels are categorized as **"Relevant (1)" and "Not Relevant (0)"**.

Problem Setting:
- Training Data: Repository descriptions from before 2022
- Test Data: Repository descriptions from 2023
- Objective: To detect repositories related to Japanese NLP

Data Collection:
- Positive Examples: Repositories listed in "[awesome-japanese-nlp-resources](https://github.com/taishi-i/awesome-japanese-nlp-resources)" as of September 9, 2023
- Negative Examples: Collected from the GitHub API and visually confirmed
- Note: The annotation process is subjective

Dataset Features:
- Subjective labeling
- Mixed English and Japanese descriptions
- Imbalanced label distribution

**These dataset features mirror real-world challenges and are ideal for evaluating models.**
Based on GitHub's terms of service, please use this dataset for research purposes only.


# How to use this dataset

How to load in Python.

```python
from datasets import load_dataset

dataset = load_dataset("taishi-i/awesome-japanese-nlp-classification-dataset")
```

Details of the dataset.

```python
DatasetDict({
    train: Dataset({
        features: ['label', 'text', 'url', 'created_at'],
        num_rows: 5496
    })
    validation: Dataset({
        features: ['label', 'text', 'url', 'created_at'],
        num_rows: 400
    })
    test: Dataset({
        features: ['label', 'text', 'url', 'created_at'],
        num_rows: 856
    })
})
```

# Baseline

Baseline trained with [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased).
Please use the baseline model from [here](https://huggingface.co/taishi-i/awesome-japanese-nlp-classification-model).
The F1-score for label 1 is important for this task.

| Label        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.98      | 0.99   | 0.98     | 796     |
| 1            | 0.79      | 0.70   | **0.74** | 60      |
| Accuracy     |           |        | 0.97     | 856     |
| Macro Avg    | 0.89      | 0.84   | 0.86     | 856     |
| Weighted Avg | 0.96      | 0.97   | 0.97     | 856     |



# Dataset stats

Label distribution:

| Dataset    | Label 0 (%) | Label 1 (%) |
|------------|-------------|-------------|
| Train      | 92.59       | 7.41        |
| Validation | 95.75       | 4.25        |
| Test       | 92.99       | 7.01        |

Relevant sample:

```python
{
    "label": 1,
    "text": "JGLUE: Japanese General Language Understanding Evaluation for huggingface datasets",
    "url": "https://github.com/shunk031/huggingface-datasets_JGLUE",
    "created_at": "2023-02-25T04:33:03Z"
}
```

Not Relevant sample:

```python
{
    "label": 0,
    "text": "Official repository of FaceLit: Neural 3D Relightable Faces (CVPR 2023)",
    "url": "https://github.com/apple/ml-facelit",
    "created_at": "2023-04-03T22:47:29Z"
}
```

Number of texts, average number of characters per text, minimum number of characters, maximum number of characters:

| Dataset    | Text Count | Average Length | Min Length | Max Length |
|------------|------------|----------------|------------|------------|
| Train      | 5496       | 58.05          | 2.0        | 609.0      |
| Validation | 400        | 54.33          | 8.0        | 226.0      |
| Test       | 856        | 58.85          | 3.0        | 341.0      |

Proportion of text languages:

| Dataset    | English (%) | Japanese (%) |
|------------|-------------|--------------|
| Train      | 89.34       | 10.66        |
| Validation | 82.00       | 18.00        |
| Test       | 83.18       | 16.82        |

Time range:

| Dataset | Start Date                | End Date                  |
|---------|---------------------------|---------------------------|
| Train   | 2008-02-11 22:55:26+00:00 | 2022-09-30 19:45:09+00:00 |
| Validation | 2022-10-01 06:02:56+00:00 | 2022-12-31 12:12:41+00:00 |
| Test | 2023-01-01 06:15:03+00:00 | 2023-08-21 15:30:53+00:00 |


# License

We collect and publish this dataset under [GitHub Acceptable Use Policies - 7. Information Usage Restrictions](https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies#7-information-usage-restrictions) and [GitHub Terms of Service - H. API Terms](https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#h-api-terms) for research purposes. This dataset should be used solely for research verification purposes. Adhering to GitHub's regulations is mandatory.