Datasets:

Modalities:
Tabular
Formats:
csv
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 1,122 Bytes
94daab7
ed609d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def8363
fb45c0b
 
 
 
 
572a919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
annotations_creators:
- Jordan Painter, Diptesh Kanojia
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: 'Utilising Weak Supervision to create S3D: A Sarcasm Annotated Dataset'
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
---

## Table of Contents
- [Dataset Description](#dataset-description)

- 
# Utilising Weak Supervision to Create S3D: A Sarcasm Annotated Dataset
This is the repository for the S3D dataset published at EMNLP 2022. The dataset can help build sarcasm detection models.

# S3D Summary
The S3D dataset is our silver standard dataset of 100,000 tweets labelled for sarcasm using weak supervision by our **BERTweet-sarcasm-combined** model.
These tweets can be accessed by using the Twitter API so that they can be used for other experiments.
S3D contains 38879 tweets labelled as sarcastic, and 61211 tweets labelled as not being sarcastic.
# Data Fields
- Tweet ID: The ID of the labelled tweet
- Label: A label to denote if a given tweet is sarcastic

# Data Splits
- Train: 70,000
- Valid: 15,000
- Test: 15,000