Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
stance-detection
License:
File size: 5,252 Bytes
707668c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
languages:
- en
licenses:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: RumourEval 2019
size_categories:
- 10K<n<100K
source_datasets: []
task_categories:
- text-classification
task_ids:
- fact-checking
- text-classification-other-stance-detection
---
# Dataset Card for "rumoureval_2019"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://competitions.codalab.org/competitions/19938](https://competitions.codalab.org/competitions/19938)
- **Repository:** [https://figshare.com/articles/dataset/RumourEval_2019_data/8845580](https://figshare.com/articles/dataset/RumourEval_2019_data/8845580)
- **Paper:** [https://aclanthology.org/S19-2147/](https://aclanthology.org/S19-2147/), [https://arxiv.org/abs/1809.06683](https://arxiv.org/abs/1809.06683)
- **Point of Contact:** [Leon Derczynski](https://github.com/leondz)
- **Size of downloaded dataset files:**
- **Size of the generated dataset:**
- **Total amount of disk used:**
### Dataset Summary
Stance prediction task in English. The goal is to predict whether a given reply to a claim either supports, denies, questions, or simply comments on the claim. Ran as a SemEval task in 2019.
### Supported Tasks and Leaderboards
* SemEval 2019 task 1
### Languages
English of various origins, bcp47: `en`
## Dataset Structure
### Data Instances
#### polstance
An example of 'train' looks as follows.
```
{
'id': '0',
'source_text': 'Appalled by the attack on Charlie Hebdo in Paris, 10 - probably journalists - now confirmed dead. An attack on free speech everywhere.',
'reply_text': '@m33ryg @tnewtondunn @mehdirhasan Of course it is free speech, that\'s the definition of "free speech" to openly make comments or draw a pic!',
'label': 3
}
```
### Data Fields
- `id`: a `string` feature.
- `source_text`: a `string` expressing a claim/topic.
- `reply_text`: a `string` to be classified for its stance to the source.
- `label`: a class label representing the stance the text expresses towards the target. Full tagset with indices:
```
0: "support",
1: "deny",
2: "query",
3: "comment"
```
- `quoteID`: a `string` of the internal quote ID.
- `party`: a `string` describing the party affiliation of the quote utterer at the time of utterance.
- `politician`: a `string` naming the politician who uttered the quote.
### Data Splits
| name |instances|
|---------|----:|
|train|7 005|
|dev|2 425|
|test|2 945|
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
Twitter users
### Annotations
#### Annotation process
Detailed in [Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads](https://journals.plos.org/plosone/article/authors?id=10.1371/journal.pone.0150989)
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
The dataset is curated by the paper's authors.
### Licensing Information
The authors distribute this data under Creative Commons attribution license, CC-BY 4.0.
### Citation Information
```
@inproceedings{gorrell-etal-2019-semeval,
title = "{S}em{E}val-2019 Task 7: {R}umour{E}val, Determining Rumour Veracity and Support for Rumours",
author = "Gorrell, Genevieve and
Kochkina, Elena and
Liakata, Maria and
Aker, Ahmet and
Zubiaga, Arkaitz and
Bontcheva, Kalina and
Derczynski, Leon",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2147",
doi = "10.18653/v1/S19-2147",
pages = "845--854",
}
```
### Contributions
Author-added dataset [@leondz](https://github.com/leondz)
|