leondz's picture
Fix `license` metadata (#1)
d766cb8
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: broad-twitter-corpus
pretty_name: Broad Twitter Corpus
---
# Dataset Card for broad_twitter_corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [https://github.com/GateNLP/broad_twitter_corpus](https://github.com/GateNLP/broad_twitter_corpus)
- **Repository:** [https://github.com/GateNLP/broad_twitter_corpus](https://github.com/GateNLP/broad_twitter_corpus)
- **Paper:** [http://www.aclweb.org/anthology/C16-1111](http://www.aclweb.org/anthology/C16-1111)
- **Leaderboard:** [Named Entity Recognition on Broad Twitter Corpus](https://paperswithcode.com/sota/named-entity-recognition-on-broad-twitter)
- **Point of Contact:** [Leon Derczynski](https://github.com/leondz)
### Dataset Summary
This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. The goal is to represent a broad range of activities, giving a dataset more representative of the language used in this hardest of social media formats to process. Further, the BTC is annotated for named entities.
See the paper, [Broad Twitter Corpus: A Diverse Named Entity Recognition Resource](http://www.aclweb.org/anthology/C16-1111), for details.
### Supported Tasks and Leaderboards
* Named Entity Recognition
* On PWC: [Named Entity Recognition on Broad Twitter Corpus](https://paperswithcode.com/sota/named-entity-recognition-on-broad-twitter)
### Languages
English from UK, US, Australia, Canada, Ireland, New Zealand; `bcp47:en`
## Dataset Structure
### Data Instances
Feature |Count
---|---:
Documents |9 551
Tokens |165 739
Person entities |5 271
Location entities |3 114
Organization entities |3 732
### Data Fields
Each tweet contains an ID, a list of tokens, and a list of NER tags
- `id`: a `string` feature.
- `tokens`: a `list` of `strings`
- `ner_tags`: a `list` of class IDs (`int`s) representing the NER class:
```
0: O
1: B-PER
2: I-PER
3: B-ORG
4: I-ORG
5: B-LOC
6: I-LOC
```
### Data Splits
Section|Region|Collection period|Description|Annotators|Tweet count
---|---|---|---|---|---:
A | UK| 2012.01| General collection |Expert| 1000
B |UK |2012.01-02 |Non-directed tweets |Expert |2000
E |Global| 2014.07| Related to MH17 disaster| Crowd & expert |200
F |Stratified |2009-2014| Twitterati |Crowd & expert |2000
G |Stratified| 2011-2014| Mainstream news| Crowd & expert| 2351
H |Non-UK| 2014 |General collection |Crowd & expert |2000
The most varied parts of the BTC are sections F and H. However, each of the remaining four sections has some specific readily-identifiable bias. So, we propose that one uses half of section H for evaluation and leaves the other half in the training data. Section H should be partitioned in the order of the JSON-format lines. Note that the CoNLL-format data is readily reconstructible from the JSON format, which is the authoritative data format from which others are derived.
**Test**: Section F
**Development**: Section H (the paper says "second half of Section H" but ordinality could be ambiguous, so it all goes in. Bonne chance)
**Training**: everything else
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
Creative Commons Attribution 4.0 International (CC BY 4.0)
### Citation Information
```
@inproceedings{derczynski2016broad,
title={Broad twitter corpus: A diverse named entity recognition resource},
author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},
booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
pages={1169--1179},
year={2016}
}
```
### Contributions
Author-added dataset [@leondz](https://github.com/leondz)