File size: 11,513 Bytes
9f82e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///

"""
Prompt Comparison: Direct Code vs Reasoning
Tests if "code only" prompt improves fine-tuned model scores

VERSION: 1.0
"""

import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi

print("=" * 60)
print("PROMPT COMPARISON TEST")
print("Direct Code vs Reasoning Prompt")
print("Benchmark: HumanEval")
print("=" * 60)

# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512

# Check GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"GPU: {torch.cuda.get_device_name(0)}")
    print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")

# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

def load_humaneval():
    """Load HumanEval dataset from EvalPlus"""
    print("\nLoading HumanEval dataset...")
    dataset = load_dataset("evalplus/humanevalplus", split="test")
    print(f"Loaded {len(dataset)} problems")
    return dataset

def load_model(model_name, adapter_name=None):
    """Load model with optional LoRA adapter"""
    print(f"\nLoading model: {model_name}")
    if adapter_name:
        print(f"With adapter: {adapter_name}")

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )

    if adapter_name:
        print("Loading LoRA adapter...")
        model = PeftModel.from_pretrained(model, adapter_name)
        model = model.merge_and_unload()
        print("Adapter merged")

    model.eval()
    return model, tokenizer

def extract_python_code(text):
    """Extract Python code from model output"""
    pattern = r'```python\s*(.*?)\s*```'
    matches = re.findall(pattern, text, re.DOTALL)
    if matches:
        return matches[-1].strip()

    pattern = r'```\s*(.*?)\s*```'
    matches = re.findall(pattern, text, re.DOTALL)
    if matches:
        return matches[-1].strip()

    return text.strip()

def generate_direct_prompt(model, tokenizer, prompt):
    """Generate with DIRECT CODE prompt - no reasoning, just code"""
    instruct_prompt = f"<s>[INST] Complete this Python function. Output ONLY the function body code, no explanations or markdown:\n\n{prompt}[/INST]"

    inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS,
            temperature=TEMPERATURE,
            do_sample=True if TEMPERATURE > 0 else False,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    raw = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    completion = extract_python_code(raw)

    # Extract function body if full function
    if completion.strip().startswith("def "):
        lines = completion.split('\n')
        body_lines = []
        in_function = False
        for line in lines:
            if line.strip().startswith("def "):
                in_function = True
                continue
            if in_function:
                body_lines.append(line)
        if body_lines:
            completion = '\n'.join(body_lines)
    elif completion == raw.strip():
        completion = raw

    # Stop at boundaries
    for stop in ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]:
        if stop in completion:
            completion = completion[:completion.index(stop)]

    return completion

def generate_reasoning_prompt(model, tokenizer, prompt):
    """Generate with REASONING prompt - original approach"""
    instruct_prompt = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\nComplete the following function:\n{prompt}\n[/INST]"

    inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS * 2,
            temperature=TEMPERATURE,
            do_sample=True if TEMPERATURE > 0 else False,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    code = extract_python_code(full_response)

    if "def " in code:
        lines = code.split('\n')
        result_lines = []
        in_function = False
        for line in lines:
            if line.strip().startswith("def "):
                in_function = True
                continue
            if in_function:
                result_lines.append(line)
        if result_lines:
            return '\n'.join(result_lines)

    return code

def simple_syntax_check(code):
    """Basic syntax validation"""
    try:
        compile(code, '<string>', 'exec')
        return True
    except SyntaxError:
        return False

def evaluate_samples(samples, dataset):
    """Evaluate samples"""
    results = {"passed": 0, "failed": 0, "error": 0}

    for sample in samples:
        task_id = sample["task_id"]
        completion = sample["completion"]

        problem = None
        for p in dataset:
            if p["task_id"] == task_id:
                problem = p
                break

        if problem is None:
            results["error"] += 1
            continue

        full_code = problem["prompt"] + completion

        if not simple_syntax_check(full_code):
            results["failed"] += 1
            continue

        try:
            exec_globals = {}
            exec(full_code, exec_globals)
            entry_point = problem.get("entry_point", task_id.split("/")[-1])
            if entry_point in exec_globals:
                results["passed"] += 1
            else:
                results["failed"] += 1
        except Exception:
            results["error"] += 1

    total = len(samples)
    pass_rate = results["passed"] / total if total > 0 else 0

    return {
        "pass@1": pass_rate,
        "passed": results["passed"],
        "failed": results["failed"],
        "error": results["error"],
        "total": total
    }

def main():
    dataset = load_humaneval()

    # Load fine-tuned model
    print("\n" + "=" * 60)
    print("LOADING FINE-TUNED MODEL")
    print("=" * 60)
    model, tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER)

    results = {}

    # Test 1: Direct prompt
    print("\n" + "=" * 60)
    print("TEST 1: DIRECT CODE PROMPT")
    print("'Output ONLY the code, no explanations'")
    print("=" * 60)
    direct_samples = []
    for problem in tqdm(dataset, desc="Direct Prompt"):
        task_id = problem["task_id"]
        prompt = problem["prompt"]
        try:
            completion = generate_direct_prompt(model, tokenizer, prompt)
            direct_samples.append({"task_id": task_id, "completion": completion})
        except Exception as e:
            print(f"Error on {task_id}: {e}")
            direct_samples.append({"task_id": task_id, "completion": "# Error"})

    results["direct"] = evaluate_samples(direct_samples, dataset)
    print(f"\nDirect Prompt Results: pass@1 = {results['direct']['pass@1']*100:.2f}%")

    # Test 2: Reasoning prompt
    print("\n" + "=" * 60)
    print("TEST 2: REASONING PROMPT (original)")
    print("'Solve with detailed reasoning'")
    print("=" * 60)
    reasoning_samples = []
    for problem in tqdm(dataset, desc="Reasoning Prompt"):
        task_id = problem["task_id"]
        prompt = problem["prompt"]
        try:
            completion = generate_reasoning_prompt(model, tokenizer, prompt)
            reasoning_samples.append({"task_id": task_id, "completion": completion})
        except Exception as e:
            print(f"Error on {task_id}: {e}")
            reasoning_samples.append({"task_id": task_id, "completion": "# Error"})

    results["reasoning"] = evaluate_samples(reasoning_samples, dataset)
    print(f"\nReasoning Prompt Results: pass@1 = {results['reasoning']['pass@1']*100:.2f}%")

    # Summary
    print("\n" + "=" * 60)
    print("PROMPT COMPARISON SUMMARY - HumanEval")
    print("=" * 60)
    print(f"\n{'Prompt Type':<30} {'pass@1':>10} {'Passed':>8} {'Failed':>8}")
    print("-" * 60)
    print(f"{'Direct Code Prompt':<30} {results['direct']['pass@1']*100:>9.2f}% {results['direct']['passed']:>8} {results['direct']['failed']:>8}")
    print(f"{'Reasoning Prompt (original)':<30} {results['reasoning']['pass@1']*100:>9.2f}% {results['reasoning']['passed']:>8} {results['reasoning']['failed']:>8}")

    improvement = (results['direct']['pass@1'] - results['reasoning']['pass@1']) * 100
    sign = "+" if improvement >= 0 else ""
    print(f"\n{'Improvement (Direct vs Reasoning):':<30} {sign}{improvement:>9.2f}%")

    # Reference
    print(f"\n{'Reference - Base Model (v2):':<30} {'82.93%':>10}")
    print(f"{'Reference - Reasoning (v2):':<30} {'62.20%':>10}")

    # Save results
    output = {
        "benchmark": "HumanEval",
        "experiment": "Prompt Comparison",
        "model": FINETUNED_ADAPTER,
        "results": {
            "direct_prompt": {
                "pass@1": float(results['direct']['pass@1']),
                "passed": results['direct']['passed'],
                "failed": results['direct']['failed'],
                "total": results['direct']['total']
            },
            "reasoning_prompt": {
                "pass@1": float(results['reasoning']['pass@1']),
                "passed": results['reasoning']['passed'],
                "failed": results['reasoning']['failed'],
                "total": results['reasoning']['total']
            },
            "improvement": float(improvement),
            "base_model_reference": 0.8293,
            "reasoning_reference": 0.6220
        },
        "samples": {
            "direct": direct_samples[:3],
            "reasoning": reasoning_samples[:3]
        }
    }

    with open("eval_prompt_comparison.json", "w") as f:
        json.dump(output, f, indent=2)
    print("\nResults saved to eval_prompt_comparison.json")

    try:
        api = HfApi()
        api.upload_file(
            path_or_fileobj="eval_prompt_comparison.json",
            path_in_repo="eval_prompt_comparison.json",
            repo_id=OUTPUT_REPO,
            repo_type="model",
        )
        print(f"Results uploaded to {OUTPUT_REPO}")
    except Exception as e:
        print(f"Could not upload results: {e}")

    print("\n" + "=" * 60)
    print("EVALUATION COMPLETE")
    print("=" * 60)

if __name__ == "__main__":
    main()