File size: 12,813 Bytes
d350099 e9ee872 d350099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///
"""
HumanEval Evaluation v3: Direct Code Prompt
Tests if using a "code only" prompt improves fine-tuned model scores
"""
import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi
print("=" * 60)
print("EVALUATION v3: Direct Code Prompt Test")
print("Benchmark: HumanEval")
print("=" * 60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512
# Check GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# Clear HF cache before loading to save storage
import shutil
cache_dir = os.path.expanduser("~/.cache/huggingface/hub")
if os.path.exists(cache_dir):
# Don't clear, but set HF to use minimal cache
pass
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_humaneval():
"""Load HumanEval dataset"""
print("\nLoading HumanEval dataset...")
dataset = load_dataset("evalplus/humanevalplus", split="test")
print(f"Loaded {len(dataset)} problems")
return dataset
def load_model(model_name, adapter_name=None):
"""Load model with optional LoRA adapter"""
print(f"\nLoading model: {model_name}")
if adapter_name:
print(f"With adapter: {adapter_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
if adapter_name:
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(model, adapter_name)
model = model.merge_and_unload()
print("Adapter merged")
model.eval()
return model, tokenizer
def extract_python_code(text):
"""Extract Python code from model output"""
# Try ```python blocks
pattern = r'```python\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
# Try ``` blocks
pattern = r'```\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
return text.strip()
def generate_completion_direct(model, tokenizer, prompt):
"""Generate code with DIRECT CODE prompt (no reasoning)"""
# Optimized prompt for direct code output
instruct_prompt = f"""<s>[INST] Complete this Python function. Output ONLY the function body code, no explanations or markdown:
{prompt}[/INST]"""
inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
raw_completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Try to extract code from blocks if present
completion = extract_python_code(raw_completion)
# If extracted code contains full function, get just the body
if completion.strip().startswith("def "):
lines = completion.split('\n')
body_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue
if in_function:
body_lines.append(line)
if body_lines:
completion = '\n'.join(body_lines)
elif completion == raw_completion.strip():
# No code block found, use raw
completion = raw_completion
# Stop at function boundary
stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
for stop in stop_tokens:
if stop in completion:
completion = completion[:completion.index(stop)]
return completion
def generate_completion_reasoning(model, tokenizer, prompt):
"""Generate code with REASONING prompt (original approach)"""
instruct_prompt = f"""<s>[INST] Solve this programming problem with detailed reasoning:
Complete the following function:
{prompt}[/INST]"""
inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS * 2,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_python_code(full_response)
if "def " in code:
lines = code.split('\n')
result_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue
if in_function:
result_lines.append(line)
if result_lines:
return '\n'.join(result_lines)
return code
def evaluate_model(model, tokenizer, dataset, model_name, use_direct_prompt=False):
"""Evaluate model on HumanEval"""
prompt_type = "DIRECT" if use_direct_prompt else "REASONING"
print(f"\nEvaluating {model_name} with {prompt_type} prompt...")
samples = []
for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name} - {prompt_type})")):
task_id = problem["task_id"]
prompt = problem["prompt"]
try:
if use_direct_prompt:
completion = generate_completion_direct(model, tokenizer, prompt)
else:
completion = generate_completion_reasoning(model, tokenizer, prompt)
samples.append({
"task_id": task_id,
"prompt": prompt,
"completion": completion,
"model": model_name,
"prompt_type": prompt_type
})
except Exception as e:
print(f"Error on {task_id}: {e}")
samples.append({
"task_id": task_id,
"prompt": prompt,
"completion": "# Error during generation",
"model": model_name,
"prompt_type": prompt_type
})
return samples
def simple_syntax_check(code):
"""Basic syntax validation"""
try:
compile(code, '<string>', 'exec')
return True
except SyntaxError:
return False
def evaluate_samples(samples, dataset):
"""Evaluate samples"""
results = {"passed": 0, "failed": 0, "error": 0}
detailed = []
for sample in samples:
task_id = sample["task_id"]
completion = sample["completion"]
problem = None
for p in dataset:
if p["task_id"] == task_id:
problem = p
break
if problem is None:
results["error"] += 1
continue
full_code = problem["prompt"] + completion
if not simple_syntax_check(full_code):
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "syntax_error"})
continue
try:
exec_globals = {}
exec(full_code, exec_globals)
entry_point = problem.get("entry_point", task_id.split("/")[-1])
if entry_point in exec_globals:
results["passed"] += 1
detailed.append({"task_id": task_id, "status": "passed"})
else:
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "missing_function"})
except Exception as e:
results["error"] += 1
detailed.append({"task_id": task_id, "status": "runtime_error", "error": str(e)[:100]})
total = len(samples)
pass_rate = results["passed"] / total if total > 0 else 0
return {
"pass@1": pass_rate,
"passed": results["passed"],
"failed": results["failed"],
"error": results["error"],
"total": total,
"detailed": detailed[:10]
}
def main():
dataset = load_humaneval()
results = {}
# Load fine-tuned model once
print("\n" + "=" * 60)
print("LOADING FINE-TUNED MODEL")
print("=" * 60)
model, tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER)
# Test 1: Direct prompt (new approach)
print("\n" + "=" * 60)
print("TEST 1: DIRECT CODE PROMPT")
print("=" * 60)
direct_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Direct", use_direct_prompt=True)
results["direct"] = evaluate_samples(direct_samples, dataset)
print(f"\nDirect Prompt Results: pass@1 = {results['direct']['pass@1']*100:.2f}%")
# Test 2: Reasoning prompt (original approach)
print("\n" + "=" * 60)
print("TEST 2: REASONING PROMPT (original)")
print("=" * 60)
reasoning_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Reasoning", use_direct_prompt=False)
results["reasoning"] = evaluate_samples(reasoning_samples, dataset)
print(f"\nReasoning Prompt Results: pass@1 = {results['reasoning']['pass@1']*100:.2f}%")
# Comparison
print("\n" + "=" * 60)
print("PROMPT COMPARISON - HumanEval")
print("=" * 60)
print(f"\n{'Prompt Type':<30} {'pass@1':>10} {'Passed':>8} {'Failed':>8}")
print("-" * 60)
print(f"{'Direct Code Prompt':<30} {results['direct']['pass@1']*100:>9.2f}% {results['direct']['passed']:>8} {results['direct']['failed']:>8}")
print(f"{'Reasoning Prompt':<30} {results['reasoning']['pass@1']*100:>9.2f}% {results['reasoning']['passed']:>8} {results['reasoning']['failed']:>8}")
improvement = (results['direct']['pass@1'] - results['reasoning']['pass@1']) * 100
sign = "+" if improvement >= 0 else ""
print(f"\n{'Improvement (Direct vs Reasoning):':<30} {sign}{improvement:>9.2f}%")
# Reference: Base model score
print(f"\n{'Reference: Base Model (v2):':<30} {'82.93%':>10}")
# Save results
output = {
"benchmark": "HumanEval",
"experiment": "Prompt Comparison",
"finetuned_model": FINETUNED_ADAPTER,
"results": {
"direct_prompt": {
"pass@1": float(results['direct']['pass@1']),
"passed": results['direct']['passed'],
"failed": results['direct']['failed'],
"total": results['direct']['total']
},
"reasoning_prompt": {
"pass@1": float(results['reasoning']['pass@1']),
"passed": results['reasoning']['passed'],
"failed": results['reasoning']['failed'],
"total": results['reasoning']['total']
},
"improvement": float(improvement),
"base_model_reference": 0.8293
},
"samples": {
"direct": direct_samples[:3],
"reasoning": reasoning_samples[:3]
}
}
with open("eval_humaneval_prompt_comparison.json", "w") as f:
json.dump(output, f, indent=2)
print("\nResults saved to eval_humaneval_prompt_comparison.json")
try:
api = HfApi()
api.upload_file(
path_or_fileobj="eval_humaneval_prompt_comparison.json",
path_in_repo="eval_humaneval_prompt_comparison.json",
repo_id=OUTPUT_REPO,
repo_type="model",
)
print(f"Results uploaded to {OUTPUT_REPO}")
except Exception as e:
print(f"Could not upload results: {e}")
print("\n" + "=" * 60)
print("EVALUATION COMPLETE")
print("=" * 60)
if __name__ == "__main__":
main()
|