File size: 12,813 Bytes
d350099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ee872
 
 
 
 
 
 
 
d350099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///

"""
HumanEval Evaluation v3: Direct Code Prompt
Tests if using a "code only" prompt improves fine-tuned model scores
"""

import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi

print("=" * 60)
print("EVALUATION v3: Direct Code Prompt Test")
print("Benchmark: HumanEval")
print("=" * 60)

# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512

# Check GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"GPU: {torch.cuda.get_device_name(0)}")
    print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")

# Clear HF cache before loading to save storage
import shutil
cache_dir = os.path.expanduser("~/.cache/huggingface/hub")
if os.path.exists(cache_dir):
    # Don't clear, but set HF to use minimal cache
    pass
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

def load_humaneval():
    """Load HumanEval dataset"""
    print("\nLoading HumanEval dataset...")
    dataset = load_dataset("evalplus/humanevalplus", split="test")
    print(f"Loaded {len(dataset)} problems")
    return dataset

def load_model(model_name, adapter_name=None):
    """Load model with optional LoRA adapter"""
    print(f"\nLoading model: {model_name}")
    if adapter_name:
        print(f"With adapter: {adapter_name}")

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )

    if adapter_name:
        print("Loading LoRA adapter...")
        model = PeftModel.from_pretrained(model, adapter_name)
        model = model.merge_and_unload()
        print("Adapter merged")

    model.eval()
    return model, tokenizer

def extract_python_code(text):
    """Extract Python code from model output"""
    # Try ```python blocks
    pattern = r'```python\s*(.*?)\s*```'
    matches = re.findall(pattern, text, re.DOTALL)
    if matches:
        return matches[-1].strip()

    # Try ``` blocks
    pattern = r'```\s*(.*?)\s*```'
    matches = re.findall(pattern, text, re.DOTALL)
    if matches:
        return matches[-1].strip()

    return text.strip()

def generate_completion_direct(model, tokenizer, prompt):
    """Generate code with DIRECT CODE prompt (no reasoning)"""
    # Optimized prompt for direct code output
    instruct_prompt = f"""<s>[INST] Complete this Python function. Output ONLY the function body code, no explanations or markdown:

{prompt}[/INST]"""

    inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS,
            temperature=TEMPERATURE,
            do_sample=True if TEMPERATURE > 0 else False,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    raw_completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)

    # Try to extract code from blocks if present
    completion = extract_python_code(raw_completion)

    # If extracted code contains full function, get just the body
    if completion.strip().startswith("def "):
        lines = completion.split('\n')
        body_lines = []
        in_function = False
        for line in lines:
            if line.strip().startswith("def "):
                in_function = True
                continue
            if in_function:
                body_lines.append(line)
        if body_lines:
            completion = '\n'.join(body_lines)
    elif completion == raw_completion.strip():
        # No code block found, use raw
        completion = raw_completion

    # Stop at function boundary
    stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
    for stop in stop_tokens:
        if stop in completion:
            completion = completion[:completion.index(stop)]

    return completion

def generate_completion_reasoning(model, tokenizer, prompt):
    """Generate code with REASONING prompt (original approach)"""
    instruct_prompt = f"""<s>[INST] Solve this programming problem with detailed reasoning:

Complete the following function:
{prompt}[/INST]"""

    inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=MAX_NEW_TOKENS * 2,
            temperature=TEMPERATURE,
            do_sample=True if TEMPERATURE > 0 else False,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    code = extract_python_code(full_response)

    if "def " in code:
        lines = code.split('\n')
        result_lines = []
        in_function = False
        for line in lines:
            if line.strip().startswith("def "):
                in_function = True
                continue
            if in_function:
                result_lines.append(line)
        if result_lines:
            return '\n'.join(result_lines)

    return code

def evaluate_model(model, tokenizer, dataset, model_name, use_direct_prompt=False):
    """Evaluate model on HumanEval"""
    prompt_type = "DIRECT" if use_direct_prompt else "REASONING"
    print(f"\nEvaluating {model_name} with {prompt_type} prompt...")
    samples = []

    for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name} - {prompt_type})")):
        task_id = problem["task_id"]
        prompt = problem["prompt"]

        try:
            if use_direct_prompt:
                completion = generate_completion_direct(model, tokenizer, prompt)
            else:
                completion = generate_completion_reasoning(model, tokenizer, prompt)

            samples.append({
                "task_id": task_id,
                "prompt": prompt,
                "completion": completion,
                "model": model_name,
                "prompt_type": prompt_type
            })
        except Exception as e:
            print(f"Error on {task_id}: {e}")
            samples.append({
                "task_id": task_id,
                "prompt": prompt,
                "completion": "# Error during generation",
                "model": model_name,
                "prompt_type": prompt_type
            })

    return samples

def simple_syntax_check(code):
    """Basic syntax validation"""
    try:
        compile(code, '<string>', 'exec')
        return True
    except SyntaxError:
        return False

def evaluate_samples(samples, dataset):
    """Evaluate samples"""
    results = {"passed": 0, "failed": 0, "error": 0}
    detailed = []

    for sample in samples:
        task_id = sample["task_id"]
        completion = sample["completion"]

        problem = None
        for p in dataset:
            if p["task_id"] == task_id:
                problem = p
                break

        if problem is None:
            results["error"] += 1
            continue

        full_code = problem["prompt"] + completion

        if not simple_syntax_check(full_code):
            results["failed"] += 1
            detailed.append({"task_id": task_id, "status": "syntax_error"})
            continue

        try:
            exec_globals = {}
            exec(full_code, exec_globals)
            entry_point = problem.get("entry_point", task_id.split("/")[-1])
            if entry_point in exec_globals:
                results["passed"] += 1
                detailed.append({"task_id": task_id, "status": "passed"})
            else:
                results["failed"] += 1
                detailed.append({"task_id": task_id, "status": "missing_function"})
        except Exception as e:
            results["error"] += 1
            detailed.append({"task_id": task_id, "status": "runtime_error", "error": str(e)[:100]})

    total = len(samples)
    pass_rate = results["passed"] / total if total > 0 else 0

    return {
        "pass@1": pass_rate,
        "passed": results["passed"],
        "failed": results["failed"],
        "error": results["error"],
        "total": total,
        "detailed": detailed[:10]
    }

def main():
    dataset = load_humaneval()
    results = {}

    # Load fine-tuned model once
    print("\n" + "=" * 60)
    print("LOADING FINE-TUNED MODEL")
    print("=" * 60)
    model, tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER)

    # Test 1: Direct prompt (new approach)
    print("\n" + "=" * 60)
    print("TEST 1: DIRECT CODE PROMPT")
    print("=" * 60)
    direct_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Direct", use_direct_prompt=True)
    results["direct"] = evaluate_samples(direct_samples, dataset)
    print(f"\nDirect Prompt Results: pass@1 = {results['direct']['pass@1']*100:.2f}%")

    # Test 2: Reasoning prompt (original approach)
    print("\n" + "=" * 60)
    print("TEST 2: REASONING PROMPT (original)")
    print("=" * 60)
    reasoning_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Reasoning", use_direct_prompt=False)
    results["reasoning"] = evaluate_samples(reasoning_samples, dataset)
    print(f"\nReasoning Prompt Results: pass@1 = {results['reasoning']['pass@1']*100:.2f}%")

    # Comparison
    print("\n" + "=" * 60)
    print("PROMPT COMPARISON - HumanEval")
    print("=" * 60)
    print(f"\n{'Prompt Type':<30} {'pass@1':>10} {'Passed':>8} {'Failed':>8}")
    print("-" * 60)
    print(f"{'Direct Code Prompt':<30} {results['direct']['pass@1']*100:>9.2f}% {results['direct']['passed']:>8} {results['direct']['failed']:>8}")
    print(f"{'Reasoning Prompt':<30} {results['reasoning']['pass@1']*100:>9.2f}% {results['reasoning']['passed']:>8} {results['reasoning']['failed']:>8}")

    improvement = (results['direct']['pass@1'] - results['reasoning']['pass@1']) * 100
    sign = "+" if improvement >= 0 else ""
    print(f"\n{'Improvement (Direct vs Reasoning):':<30} {sign}{improvement:>9.2f}%")

    # Reference: Base model score
    print(f"\n{'Reference: Base Model (v2):':<30} {'82.93%':>10}")

    # Save results
    output = {
        "benchmark": "HumanEval",
        "experiment": "Prompt Comparison",
        "finetuned_model": FINETUNED_ADAPTER,
        "results": {
            "direct_prompt": {
                "pass@1": float(results['direct']['pass@1']),
                "passed": results['direct']['passed'],
                "failed": results['direct']['failed'],
                "total": results['direct']['total']
            },
            "reasoning_prompt": {
                "pass@1": float(results['reasoning']['pass@1']),
                "passed": results['reasoning']['passed'],
                "failed": results['reasoning']['failed'],
                "total": results['reasoning']['total']
            },
            "improvement": float(improvement),
            "base_model_reference": 0.8293
        },
        "samples": {
            "direct": direct_samples[:3],
            "reasoning": reasoning_samples[:3]
        }
    }

    with open("eval_humaneval_prompt_comparison.json", "w") as f:
        json.dump(output, f, indent=2)
    print("\nResults saved to eval_humaneval_prompt_comparison.json")

    try:
        api = HfApi()
        api.upload_file(
            path_or_fileobj="eval_humaneval_prompt_comparison.json",
            path_in_repo="eval_humaneval_prompt_comparison.json",
            repo_id=OUTPUT_REPO,
            repo_type="model",
        )
        print(f"Results uploaded to {OUTPUT_REPO}")
    except Exception as e:
        print(f"Could not upload results: {e}")

    print("\n" + "=" * 60)
    print("EVALUATION COMPLETE")
    print("=" * 60)

if __name__ == "__main__":
    main()