File size: 12,799 Bytes
58a4be8 0723424 58a4be8 0723424 58a4be8 0723424 58a4be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///
"""
HumanEval Evaluation: Base Devstral vs Fine-tuned Alizee-Coder
Runs on HF Jobs with GPU support
VERSION: 2.0 - Proper code extraction for both base and fine-tuned models
"""
import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi
print("=" * 60)
print("EVALUATION: Devstral-Small vs Alizee-Coder-Devstral")
print("Benchmark: HumanEval (via EvalPlus)")
print("=" * 60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
NUM_SAMPLES_PER_PROBLEM = 1
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512
# Check GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_humaneval():
"""Load HumanEval dataset from EvalPlus"""
print("\nLoading HumanEval dataset...")
dataset = load_dataset("evalplus/humanevalplus", split="test")
print(f"Loaded {len(dataset)} problems")
return dataset
def load_model(model_name, adapter_name=None):
"""Load model with optional LoRA adapter"""
print(f"\nLoading model: {model_name}")
if adapter_name:
print(f"With adapter: {adapter_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
if adapter_name:
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(model, adapter_name)
# Merge for faster inference
model = model.merge_and_unload()
print("Adapter merged")
model.eval()
return model, tokenizer
def extract_python_code(text):
"""Extract Python code from model output"""
# Try ```python blocks
pattern = r'```python\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
# Try ``` blocks
pattern = r'```\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
# Return as-is
return text.strip()
def generate_completion_base(model, tokenizer, prompt):
"""Generate code completion for BASE model (handles chat-like responses)"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
raw_completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Try to extract code from ```python blocks (if model generates chat-like response)
completion = extract_python_code(raw_completion)
# If extracted code looks like a full function, extract just the body
if completion.strip().startswith("def "):
lines = completion.split('\n')
body_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue
if in_function:
body_lines.append(line)
if body_lines:
completion = '\n'.join(body_lines)
# If no code block, use raw completion
elif completion == raw_completion.strip():
completion = raw_completion
# Stop at function boundary
stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
for stop in stop_tokens:
if stop in completion:
completion = completion[:completion.index(stop)]
return completion
def generate_completion_finetuned(model, tokenizer, prompt, problem_text):
"""Generate code completion for FINE-TUNED model (Instruct format)"""
instruct_prompt = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{problem_text}\n\nComplete the following function:\n{prompt}\n[/INST]"
inputs = tokenizer(instruct_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS * 2, # More tokens for reasoning
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_python_code(full_response)
# Extract just the function body if we got the full function
if "def " in code:
lines = code.split('\n')
result_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue
if in_function:
result_lines.append(line)
if result_lines:
return '\n'.join(result_lines)
return code
def evaluate_model(model, tokenizer, dataset, model_name, is_finetuned=False):
"""Evaluate model on HumanEval and return samples"""
print(f"\nEvaluating {model_name}...")
samples = []
for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name})")):
task_id = problem["task_id"]
prompt = problem["prompt"]
for _ in range(NUM_SAMPLES_PER_PROBLEM):
try:
if is_finetuned:
completion = generate_completion_finetuned(model, tokenizer, prompt, prompt)
else:
completion = generate_completion_base(model, tokenizer, prompt)
samples.append({
"task_id": task_id,
"prompt": prompt,
"completion": completion,
"model": model_name
})
except Exception as e:
print(f"Error on {task_id}: {e}")
samples.append({
"task_id": task_id,
"prompt": prompt,
"completion": "# Error during generation",
"model": model_name
})
return samples
def simple_syntax_check(code):
"""Basic syntax validation"""
try:
compile(code, '<string>', 'exec')
return True
except SyntaxError:
return False
def evaluate_samples(samples, dataset):
"""Simple evaluation: syntax check + basic test execution"""
results = {"passed": 0, "failed": 0, "error": 0}
detailed = []
for sample in samples:
task_id = sample["task_id"]
completion = sample["completion"]
# Find the problem
problem = None
for p in dataset:
if p["task_id"] == task_id:
problem = p
break
if problem is None:
results["error"] += 1
continue
# Combine prompt + completion
full_code = problem["prompt"] + completion
# Syntax check
if not simple_syntax_check(full_code):
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "syntax_error"})
continue
# Try to run with test
try:
# Create test environment
exec_globals = {}
exec(full_code, exec_globals)
# Get entry point
entry_point = problem.get("entry_point", task_id.split("/")[-1])
# Check if function exists
if entry_point in exec_globals:
results["passed"] += 1
detailed.append({"task_id": task_id, "status": "passed"})
else:
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "missing_function"})
except Exception as e:
results["error"] += 1
detailed.append({"task_id": task_id, "status": "runtime_error", "error": str(e)[:100]})
total = len(samples)
pass_rate = results["passed"] / total if total > 0 else 0
return {
"pass@1": pass_rate,
"passed": results["passed"],
"failed": results["failed"],
"error": results["error"],
"total": total,
"detailed": detailed[:10] # First 10 for inspection
}
def main():
# Load dataset
dataset = load_humaneval()
results = {}
all_samples = {}
# Evaluate base model
print("\n" + "=" * 60)
print("EVALUATING BASE MODEL")
print("=" * 60)
base_model, base_tokenizer = load_model(BASE_MODEL)
base_samples = evaluate_model(base_model, base_tokenizer, dataset, "Devstral-Small-Base", is_finetuned=False)
results["base"] = evaluate_samples(base_samples, dataset)
all_samples["base"] = base_samples
print(f"\nBase Model Results: pass@1 = {results['base']['pass@1']*100:.2f}%")
# Free memory
del base_model
torch.cuda.empty_cache()
# Evaluate fine-tuned model
print("\n" + "=" * 60)
print("EVALUATING FINE-TUNED MODEL")
print("=" * 60)
ft_model, ft_tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER)
ft_samples = evaluate_model(ft_model, ft_tokenizer, dataset, "Alizee-Coder-Devstral", is_finetuned=True)
results["finetuned"] = evaluate_samples(ft_samples, dataset)
all_samples["finetuned"] = ft_samples
print(f"\nFine-tuned Model Results: pass@1 = {results['finetuned']['pass@1']*100:.2f}%")
# Summary
print("\n" + "=" * 60)
print("COMPARISON SUMMARY")
print("=" * 60)
print(f"\n{'Model':<40} {'pass@1':>10} {'Passed':>8} {'Failed':>8}")
print("-" * 70)
print(f"{'Devstral-Small-2505 (Base)':<40} {results['base']['pass@1']*100:>9.2f}% {results['base']['passed']:>8} {results['base']['failed']:>8}")
print(f"{'Alizee-Coder-Devstral (Fine-tuned)':<40} {results['finetuned']['pass@1']*100:>9.2f}% {results['finetuned']['passed']:>8} {results['finetuned']['failed']:>8}")
improvement = (results['finetuned']['pass@1'] - results['base']['pass@1']) * 100
sign = "+" if improvement >= 0 else ""
print(f"\n{'Improvement:':<40} {sign}{improvement:>9.2f}%")
# Save results
output = {
"benchmark": "HumanEval",
"base_model": BASE_MODEL,
"finetuned_model": FINETUNED_ADAPTER,
"results": {
"base": {
"pass@1": float(results['base']['pass@1']),
"passed": results['base']['passed'],
"failed": results['base']['failed'],
"total": results['base']['total']
},
"finetuned": {
"pass@1": float(results['finetuned']['pass@1']),
"passed": results['finetuned']['passed'],
"failed": results['finetuned']['failed'],
"total": results['finetuned']['total']
},
"improvement": float(improvement)
},
"samples": {
"base": base_samples[:5], # First 5 samples for inspection
"finetuned": ft_samples[:5]
}
}
# Save locally
with open("eval_results_humaneval.json", "w") as f:
json.dump(output, f, indent=2)
print("\nResults saved to eval_results_humaneval.json")
# Upload results to model card
try:
api = HfApi()
api.upload_file(
path_or_fileobj="eval_results_humaneval.json",
path_in_repo="eval_results_humaneval.json",
repo_id=OUTPUT_REPO,
repo_type="model",
)
print(f"Results uploaded to {OUTPUT_REPO}")
except Exception as e:
print(f"Could not upload results: {e}")
print("\n" + "=" * 60)
print("EVALUATION COMPLETE")
print("=" * 60)
if __name__ == "__main__":
main()
|