File size: 25,790 Bytes
ceff78e
 
 
 
 
 
 
 
 
 
 
 
 
b1213cd
ceff78e
 
 
 
 
 
b1213cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceff78e
 
 
 
b1213cd
 
ceff78e
 
 
b1213cd
 
 
 
 
 
 
 
 
ceff78e
 
b1213cd
ceff78e
b1213cd
 
 
ceff78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1213cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceff78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datasets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading builder script: 100%|██████████| 9.38k/9.38k [00:00<00:00, 9.38MB/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "https://huggingface.co/datasets/steamcyclone/Pill_Ideologies-Post_Titles/blob/main/reddit_posts_fm.csv\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading data: 100%|██████████| 48.0k/48.0k [00:00<00:00, 1.40MB/s]\n",
      "Generating train split: 0 examples [00:00, ? examples/s]\n"
     ]
    },
    {
     "ename": "DatasetGenerationError",
     "evalue": "An error occurred while generating the dataset",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\builder.py:1726\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[1;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[0;32m   1725\u001b[0m _time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m-> 1726\u001b[0m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrecord\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgenerator\u001b[49m\u001b[43m:\u001b[49m\n\u001b[0;32m   1727\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mand\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_bytes\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m:\u001b[49m\n",
      "File \u001b[1;32m~\\.cache\\huggingface\\modules\\datasets_modules\\datasets\\steamcyclone--Pill_Ideologies-Post_Titles\\b9769a66aafdd51743be385ed8b5c1188cf1bb911c2283a4d495a71e5eea207d\\Pill_Ideologies-Post_Titles.py:185\u001b[0m, in \u001b[0;36mSubRedditPosts._generate_examples\u001b[1;34m(self, filepath, split)\u001b[0m\n\u001b[0;32m    182\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_generate_examples\u001b[39m(\u001b[38;5;28mself\u001b[39m, filepath, split):\n\u001b[0;32m    183\u001b[0m     \u001b[38;5;66;03m# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.\u001b[39;00m\n\u001b[0;32m    184\u001b[0m     \u001b[38;5;66;03m# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.\u001b[39;00m\n\u001b[1;32m--> 185\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mfilepath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m f:\n\u001b[0;32m    186\u001b[0m         \u001b[38;5;28;01mfor\u001b[39;00m key, row \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(f):\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\streaming.py:75\u001b[0m, in \u001b[0;36mextend_module_for_streaming.<locals>.wrap_auth.<locals>.wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     73\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(function)\n\u001b[0;32m     74\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m---> 75\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\download\\streaming_download_manager.py:501\u001b[0m, in \u001b[0;36mxopen\u001b[1;34m(file, mode, download_config, *args, **kwargs)\u001b[0m\n\u001b[0;32m    500\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_local_path(main_hop):\n\u001b[1;32m--> 501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmain_hop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    502\u001b[0m \u001b[38;5;66;03m# add headers and cookies for authentication on the HF Hub and for Google Drive\u001b[39;00m\n",
      "\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'C:\\\\Users\\\\ericr\\\\.cache\\\\huggingface\\\\datasets\\\\downloads\\\\4b51286d8928be7cb69e9f832ace34b264a15b9a5d12d1f9c812eee79f9c19e9\\\\train.jsonl'",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[1;31mDatasetGenerationError\u001b[0m                    Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[6], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m test \u001b[38;5;241m=\u001b[39m \u001b[43mdatasets\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msteamcyclone/Pill_Ideologies-Post_Titles\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\load.py:2549\u001b[0m, in \u001b[0;36mload_dataset\u001b[1;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[0;32m   2546\u001b[0m try_from_hf_gcs \u001b[38;5;241m=\u001b[39m path \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _PACKAGED_DATASETS_MODULES\n\u001b[0;32m   2548\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[1;32m-> 2549\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   2550\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   2551\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   2552\u001b[0m \u001b[43m    \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   2553\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   2554\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   2555\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   2556\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   2558\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[0;32m   2559\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m   2560\u001b[0m     keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[0;32m   2561\u001b[0m )\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\builder.py:1005\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[1;34m(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[0;32m   1003\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m   1004\u001b[0m         prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[1;32m-> 1005\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1006\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1007\u001b[0m \u001b[43m        \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1008\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1009\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1010\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1011\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[0;32m   1012\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\builder.py:1767\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[1;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[0;32m   1766\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verification_mode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[1;32m-> 1767\u001b[0m     \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1768\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1769\u001b[0m \u001b[43m        \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1770\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBASIC_CHECKS\u001b[49m\n\u001b[0;32m   1771\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mALL_CHECKS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1772\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1773\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\builder.py:1100\u001b[0m, in \u001b[0;36mDatasetBuilder._download_and_prepare\u001b[1;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[0;32m   1096\u001b[0m split_dict\u001b[38;5;241m.\u001b[39madd(split_generator\u001b[38;5;241m.\u001b[39msplit_info)\n\u001b[0;32m   1098\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m   1099\u001b[0m     \u001b[38;5;66;03m# Prepare split will record examples associated to the split\u001b[39;00m\n\u001b[1;32m-> 1100\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_generator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1101\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m   1102\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[0;32m   1103\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot find data file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   1104\u001b[0m         \u001b[38;5;241m+\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmanual_download_instructions \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m   1105\u001b[0m         \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mOriginal error:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   1106\u001b[0m         \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(e)\n\u001b[0;32m   1107\u001b[0m     ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\builder.py:1605\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split\u001b[1;34m(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[0;32m   1603\u001b[0m job_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m   1604\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m pbar:\n\u001b[1;32m-> 1605\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mjob_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdone\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split_single\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1606\u001b[0m \u001b[43m        \u001b[49m\u001b[43mgen_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgen_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjob_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjob_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m_prepare_split_args\u001b[49m\n\u001b[0;32m   1607\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[0;32m   1608\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdone\u001b[49m\u001b[43m:\u001b[49m\n\u001b[0;32m   1609\u001b[0m \u001b[43m            \u001b[49m\u001b[43mresult\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mcontent\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\ericr\\miniconda3\\envs\\sta663C\\Lib\\site-packages\\datasets\\builder.py:1762\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[1;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[0;32m   1760\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, SchemaInferenceError) \u001b[38;5;129;01mand\u001b[39;00m e\u001b[38;5;241m.\u001b[39m__context__ \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m   1761\u001b[0m         e \u001b[38;5;241m=\u001b[39m e\u001b[38;5;241m.\u001b[39m__context__\n\u001b[1;32m-> 1762\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m DatasetGenerationError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAn error occurred while generating the dataset\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m   1764\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m job_id, \u001b[38;5;28;01mTrue\u001b[39;00m, (total_num_examples, total_num_bytes, writer\u001b[38;5;241m.\u001b[39m_features, num_shards, shard_lengths)\n",
      "\u001b[1;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "test = datasets.load_dataset(\"steamcyclone/Pill_Ideologies-Post_Titles\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv(r'C:\\Users\\ericr\\Documents\\STA663Repo\\Hugginface\\Pill-Ideologies-New-Test\\reddit_posts_fm.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>subreddit</th>\n",
       "      <th>id</th>\n",
       "      <th>title</th>\n",
       "      <th>text</th>\n",
       "      <th>url</th>\n",
       "      <th>score</th>\n",
       "      <th>author</th>\n",
       "      <th>date</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>theredpillrebooted</td>\n",
       "      <td>17c1wxt</td>\n",
       "      <td>My name is Benjamin Persits and I am so sick o...</td>\n",
       "      <td>Yes, I'm using my full name because I'm so sic...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0</td>\n",
       "      <td>benjypersits</td>\n",
       "      <td>2023-10-20 03:40:33</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>theredpillrebooted</td>\n",
       "      <td>16i06xc</td>\n",
       "      <td>WHAT THE FUCK!?!?!?!?</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://v.redd.it/8d1eapsih3ob1</td>\n",
       "      <td>0</td>\n",
       "      <td>PatchesTheIdiot</td>\n",
       "      <td>2023-09-13 21:57:56</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>theredpillrebooted</td>\n",
       "      <td>16a4ekb</td>\n",
       "      <td>Why is she an asshole with me and how to handl...</td>\n",
       "      <td>So I got this girl who's kinda my crush but I ...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0</td>\n",
       "      <td>Worried-Horse-3408</td>\n",
       "      <td>2023-09-04 21:19:27</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>theredpillrebooted</td>\n",
       "      <td>15f45sl</td>\n",
       "      <td>Popular US vlogger Gonzalo Lira aka Coach Red ...</td>\n",
       "      <td>&amp;amp;#x200B;\\n\\n[https://chng.it/gFyFvqS5K7](h...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>0</td>\n",
       "      <td>Beautiful_Diamond980</td>\n",
       "      <td>2023-08-01 06:21:36</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>theredpillrebooted</td>\n",
       "      <td>12wwyzc</td>\n",
       "      <td>Mrs. Rooster by Stinky Buckets</td>\n",
       "      <td>NaN</td>\n",
       "      <td>https://youtube.com/watch?v=jK5BQngWne4&amp;amp;fe...</td>\n",
       "      <td>1</td>\n",
       "      <td>LetsGoRedDevils</td>\n",
       "      <td>2023-04-24 00:50:48</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            subreddit       id  \\\n",
       "0  theredpillrebooted  17c1wxt   \n",
       "1  theredpillrebooted  16i06xc   \n",
       "2  theredpillrebooted  16a4ekb   \n",
       "3  theredpillrebooted  15f45sl   \n",
       "4  theredpillrebooted  12wwyzc   \n",
       "\n",
       "                                               title  \\\n",
       "0  My name is Benjamin Persits and I am so sick o...   \n",
       "1                              WHAT THE FUCK!?!?!?!?   \n",
       "2  Why is she an asshole with me and how to handl...   \n",
       "3  Popular US vlogger Gonzalo Lira aka Coach Red ...   \n",
       "4                     Mrs. Rooster by Stinky Buckets   \n",
       "\n",
       "                                                text  \\\n",
       "0  Yes, I'm using my full name because I'm so sic...   \n",
       "1                                                NaN   \n",
       "2  So I got this girl who's kinda my crush but I ...   \n",
       "3  &amp;#x200B;\\n\\n[https://chng.it/gFyFvqS5K7](h...   \n",
       "4                                                NaN   \n",
       "\n",
       "                                                 url  score  \\\n",
       "0                                                NaN      0   \n",
       "1                    https://v.redd.it/8d1eapsih3ob1      0   \n",
       "2                                                NaN      0   \n",
       "3                                                NaN      0   \n",
       "4  https://youtube.com/watch?v=jK5BQngWne4&amp;fe...      1   \n",
       "\n",
       "                 author                 date  \n",
       "0          benjypersits  2023-10-20 03:40:33  \n",
       "1       PatchesTheIdiot  2023-09-13 21:57:56  \n",
       "2    Worried-Horse-3408  2023-09-04 21:19:27  \n",
       "3  Beautiful_Diamond980  2023-08-01 06:21:36  \n",
       "4       LetsGoRedDevils  2023-04-24 00:50:48  "
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# make stratified train, validation, and test sets\n",
    "\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "train, test = train_test_split(df, test_size=0.10, stratify=df['subreddit'])\n",
    "train, val = train_test_split(train, test_size=0.20, stratify=train['subreddit'])\n",
    "\n",
    "train.shape, val.shape, test.shape"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "sta663C",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}