File size: 5,803 Bytes
e6e8e6b
 
7b86964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3deeb
 
 
 
 
 
 
 
be9b307
 
7b86964
 
 
 
 
 
 
 
 
 
 
b67421f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e8e6b
 
1096c98
e6e8e6b
 
 
 
 
 
 
 
 
b67421f
e6e8e6b
a7cd815
878c5c9
e6e8e6b
 
 
 
b67421f
e6e8e6b
 
 
 
 
b67421f
 
 
 
 
 
 
 
e6e8e6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
pretty_name: All of Common Crawl News, 100+ languages, preprocessed and cleaned
task_categories:
- text-classification
- question-answering
- text-generation
- text2text-generation
size_categories:
- 100M<n<1B
tags:
- news
configs:
  - config_name: "2016"
    data_files: "2016_part_00.jsonl.gz"
  - config_name: "2017"
    data_files:
      - "2017_part_00.jsonl.gz"
      - "2017_part_01.jsonl.gz"
      - "2017_part_02.jsonl.gz"
      - "2017_part_03.jsonl.gz"
      - "2017_part_04.jsonl.gz"
      - "2017_part_05.jsonl.gz"
  - config_name: "2018"
    data_files:
      - "2018_part_00.jsonl.gz"
      - "2018_part_01.jsonl.gz"
      - "2018_part_02.jsonl.gz"
      - "2018_part_03.jsonl.gz"
      - "2018_part_04.jsonl.gz"
      - "2018_part_05.jsonl.gz"
      - "2018_part_06.jsonl.gz"
      - "2018_part_07.jsonl.gz"
      - "2018_part_08.jsonl.gz"
  - config_name: "2019"
    data_files:
      - "2019_part_00.jsonl.gz"
      - "2019_part_01.jsonl.gz"
      - "2019_part_02.jsonl.gz"
      - "2019_part_03.jsonl.gz"
      - "2019_part_04.jsonl.gz"
      - "2019_part_05.jsonl.gz"
      - "2019_part_06.jsonl.gz"
      - "2019_part_07.jsonl.gz"
      - "2019_part_08.jsonl.gz"
      - "2019_part_09.jsonl.gz"
      - "2019_part_10.jsonl.gz"
  - config_name: "2020"
    data_files:
      - "2020_part_00.jsonl.gz"
      - "2020_part_01.jsonl.gz"
      - "2020_part_02.jsonl.gz"
      - "2020_part_03.jsonl.gz"
      - "2020_part_04.jsonl.gz"
      - "2020_part_05.jsonl.gz"
      - "2020_part_06.jsonl.gz"
      - "2020_part_07.jsonl.gz"
      - "2020_part_08.jsonl.gz"
      - "2020_part_09.jsonl.gz"
      - "2020_part_10.jsonl.gz"
      - "2020_part_11.jsonl.gz"
      - "2020_part_12.jsonl.gz"
      - "2020_part_13.jsonl.gz"
      - "2020_part_14.jsonl.gz"
      - "2020_part_15.jsonl.gz"
  - config_name: "2021"
    data_files:
      - "2021_part_00.jsonl.gz"
      - "2021_part_01.jsonl.gz"
      - "2021_part_02.jsonl.gz"
      - "2021_part_03.jsonl.gz"
      - "2021_part_04.jsonl.gz"
      - "2021_part_05.jsonl.gz"
      - "2021_part_06.jsonl.gz"
      - "2021_part_07.jsonl.gz"
      - "2021_part_08.jsonl.gz"
      - "2021_part_09.jsonl.gz"
      - "2021_part_10.jsonl.gz"
      - "2021_part_11.jsonl.gz"
      - "2021_part_12.jsonl.gz"
      - "2021_part_13.jsonl.gz"
      - "2021_part_14.jsonl.gz"
      - "2021_part_15.jsonl.gz"
  - config_name: "2022"
    data_files:
      - "2022_part_00.jsonl.gz"
      - "2022_part_01.jsonl.gz"
      - "2022_part_02.jsonl.gz"
      - "2022_part_03.jsonl.gz"
      - "2022_part_04.jsonl.gz"
      - "2022_part_05.jsonl.gz"
      - "2022_part_06.jsonl.gz"
      - "2022_part_07.jsonl.gz"
      - "2022_part_08.jsonl.gz"
      - "2022_part_09.jsonl.gz"
      - "2022_part_10.jsonl.gz"
      - "2022_part_11.jsonl.gz"
      - "2022_part_12.jsonl.gz"
      - "2022_part_13.jsonl.gz"
      - "2022_part_14.jsonl.gz"
      - "2022_part_15.jsonl.gz"
      - "2022_part_16.jsonl.gz"
  - config_name: "2023"
    data_files:
      - "2023_part_00.jsonl.gz"
      - "2023_part_01.jsonl.gz"
      - "2023_part_02.jsonl.gz"
      - "2023_part_03.jsonl.gz"
      - "2023_part_04.jsonl.gz"
      - "2023_part_05.jsonl.gz"
      - "2023_part_06.jsonl.gz"
      - "2023_part_07.jsonl.gz"
      - "2023_part_08.jsonl.gz"
      - "2023_part_09.jsonl.gz"
      - "2023_part_10.jsonl.gz"
      - "2023_part_11.jsonl.gz"
      - "2023_part_12.jsonl.gz"
      - "2023_part_13.jsonl.gz"
      - "2023_part_14.jsonl.gz"
      - "2023_part_15.jsonl.gz"
  - config_name: "2024"
    data_files:
      - "2024_part_00.jsonl.gz"
      - "2024_part_01.jsonl.gz"
      - "2024_part_02.jsonl.gz"
      - "2024_part_03.jsonl.gz"
      - "2024_part_04.jsonl.gz"
      - "2024_part_05.jsonl.gz"
      - "2024_part_06.jsonl.gz"

---

This dataset is the result of processing all WARC files in the [CCNews Corpus](https://commoncrawl.org/blog/news-dataset-available), from the beginning (2016) to June of 2024.
The data has been cleaned and deduplicated, and language of articles have been detected and added. The process is similar to what HuggingFace's [DataTrove](https://github.com/huggingface/datatrove) does.

Overall, it contains about 600 million news articles in more than 100 languages from all around the globe.


Sample Python code to explore this dataset:

```python
from datasets import load_dataset
from tqdm import tqdm

# Load the news articles **crawled** in the year 2016 (but not necessarily published in 2016), in streaming mode
dataset = load_dataset("stanford-oval/ccnews", name="2016", streaming=True) # `name` can be one of 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024

# Print information about the dataset
print(dataset)

# Iterate over a few examples
print("\nFirst few examples:")
for i, example in enumerate(dataset["train"].take(5)):
    print(f"Example {i + 1}:")
    print(example)
    print()

# Count the number of articles (in 2016)
row_count = 0
for _ in tqdm(dataset["train"], desc="Counting rows", unit=" rows", unit_scale=True, unit_divisor=1000):
    row_count += 1

# Print the number of rows
print(f"\nTotal number of articles: {row_count}")
```