File size: 5,803 Bytes
e6e8e6b 7b86964 ee3deeb be9b307 7b86964 b67421f e6e8e6b 1096c98 e6e8e6b b67421f e6e8e6b a7cd815 878c5c9 e6e8e6b b67421f e6e8e6b b67421f e6e8e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
---
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
pretty_name: All of Common Crawl News, 100+ languages, preprocessed and cleaned
task_categories:
- text-classification
- question-answering
- text-generation
- text2text-generation
size_categories:
- 100M<n<1B
tags:
- news
configs:
- config_name: "2016"
data_files: "2016_part_00.jsonl.gz"
- config_name: "2017"
data_files:
- "2017_part_00.jsonl.gz"
- "2017_part_01.jsonl.gz"
- "2017_part_02.jsonl.gz"
- "2017_part_03.jsonl.gz"
- "2017_part_04.jsonl.gz"
- "2017_part_05.jsonl.gz"
- config_name: "2018"
data_files:
- "2018_part_00.jsonl.gz"
- "2018_part_01.jsonl.gz"
- "2018_part_02.jsonl.gz"
- "2018_part_03.jsonl.gz"
- "2018_part_04.jsonl.gz"
- "2018_part_05.jsonl.gz"
- "2018_part_06.jsonl.gz"
- "2018_part_07.jsonl.gz"
- "2018_part_08.jsonl.gz"
- config_name: "2019"
data_files:
- "2019_part_00.jsonl.gz"
- "2019_part_01.jsonl.gz"
- "2019_part_02.jsonl.gz"
- "2019_part_03.jsonl.gz"
- "2019_part_04.jsonl.gz"
- "2019_part_05.jsonl.gz"
- "2019_part_06.jsonl.gz"
- "2019_part_07.jsonl.gz"
- "2019_part_08.jsonl.gz"
- "2019_part_09.jsonl.gz"
- "2019_part_10.jsonl.gz"
- config_name: "2020"
data_files:
- "2020_part_00.jsonl.gz"
- "2020_part_01.jsonl.gz"
- "2020_part_02.jsonl.gz"
- "2020_part_03.jsonl.gz"
- "2020_part_04.jsonl.gz"
- "2020_part_05.jsonl.gz"
- "2020_part_06.jsonl.gz"
- "2020_part_07.jsonl.gz"
- "2020_part_08.jsonl.gz"
- "2020_part_09.jsonl.gz"
- "2020_part_10.jsonl.gz"
- "2020_part_11.jsonl.gz"
- "2020_part_12.jsonl.gz"
- "2020_part_13.jsonl.gz"
- "2020_part_14.jsonl.gz"
- "2020_part_15.jsonl.gz"
- config_name: "2021"
data_files:
- "2021_part_00.jsonl.gz"
- "2021_part_01.jsonl.gz"
- "2021_part_02.jsonl.gz"
- "2021_part_03.jsonl.gz"
- "2021_part_04.jsonl.gz"
- "2021_part_05.jsonl.gz"
- "2021_part_06.jsonl.gz"
- "2021_part_07.jsonl.gz"
- "2021_part_08.jsonl.gz"
- "2021_part_09.jsonl.gz"
- "2021_part_10.jsonl.gz"
- "2021_part_11.jsonl.gz"
- "2021_part_12.jsonl.gz"
- "2021_part_13.jsonl.gz"
- "2021_part_14.jsonl.gz"
- "2021_part_15.jsonl.gz"
- config_name: "2022"
data_files:
- "2022_part_00.jsonl.gz"
- "2022_part_01.jsonl.gz"
- "2022_part_02.jsonl.gz"
- "2022_part_03.jsonl.gz"
- "2022_part_04.jsonl.gz"
- "2022_part_05.jsonl.gz"
- "2022_part_06.jsonl.gz"
- "2022_part_07.jsonl.gz"
- "2022_part_08.jsonl.gz"
- "2022_part_09.jsonl.gz"
- "2022_part_10.jsonl.gz"
- "2022_part_11.jsonl.gz"
- "2022_part_12.jsonl.gz"
- "2022_part_13.jsonl.gz"
- "2022_part_14.jsonl.gz"
- "2022_part_15.jsonl.gz"
- "2022_part_16.jsonl.gz"
- config_name: "2023"
data_files:
- "2023_part_00.jsonl.gz"
- "2023_part_01.jsonl.gz"
- "2023_part_02.jsonl.gz"
- "2023_part_03.jsonl.gz"
- "2023_part_04.jsonl.gz"
- "2023_part_05.jsonl.gz"
- "2023_part_06.jsonl.gz"
- "2023_part_07.jsonl.gz"
- "2023_part_08.jsonl.gz"
- "2023_part_09.jsonl.gz"
- "2023_part_10.jsonl.gz"
- "2023_part_11.jsonl.gz"
- "2023_part_12.jsonl.gz"
- "2023_part_13.jsonl.gz"
- "2023_part_14.jsonl.gz"
- "2023_part_15.jsonl.gz"
- config_name: "2024"
data_files:
- "2024_part_00.jsonl.gz"
- "2024_part_01.jsonl.gz"
- "2024_part_02.jsonl.gz"
- "2024_part_03.jsonl.gz"
- "2024_part_04.jsonl.gz"
- "2024_part_05.jsonl.gz"
- "2024_part_06.jsonl.gz"
---
This dataset is the result of processing all WARC files in the [CCNews Corpus](https://commoncrawl.org/blog/news-dataset-available), from the beginning (2016) to June of 2024.
The data has been cleaned and deduplicated, and language of articles have been detected and added. The process is similar to what HuggingFace's [DataTrove](https://github.com/huggingface/datatrove) does.
Overall, it contains about 600 million news articles in more than 100 languages from all around the globe.
Sample Python code to explore this dataset:
```python
from datasets import load_dataset
from tqdm import tqdm
# Load the news articles **crawled** in the year 2016 (but not necessarily published in 2016), in streaming mode
dataset = load_dataset("stanford-oval/ccnews", name="2016", streaming=True) # `name` can be one of 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024
# Print information about the dataset
print(dataset)
# Iterate over a few examples
print("\nFirst few examples:")
for i, example in enumerate(dataset["train"].take(5)):
print(f"Example {i + 1}:")
print(example)
print()
# Count the number of articles (in 2016)
row_count = 0
for _ in tqdm(dataset["train"], desc="Counting rows", unit=" rows", unit_scale=True, unit_divisor=1000):
row_count += 1
# Print the number of rows
print(f"\nTotal number of articles: {row_count}")
``` |