|
[ |
|
{ |
|
"id": 0, |
|
"page": 5, |
|
"bounding_box": [ |
|
184.66600036621094, |
|
198.38800048828125, |
|
427.3340148925781, |
|
309.968994140625 |
|
], |
|
"latex_content": "\\begin{table}[H]\n\\caption{Classification and regression modules present in the current AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Classification} & \\textbf{Regression} \\\\ \\hline\n Random Forest & Random Forest \\\\ \\hline\n Gradient Boosting & Gradient Boosting \\\\ \\hline\n Logistic Regression & Logistic Regression \\\\ \\hline\n Ridge Classifier & Ridge \\\\ \\hline\n Naive Bayes & Lasso \\\\ \\hline\n SVM & Support Vector Regression\\\\ \\hline\n Nearest Neighbors & Linear Regressor \\\\ \\hline\n\n \\end{tabular}\n\\end{center}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Classification", |
|
"Regression" |
|
], |
|
[ |
|
"Random Forest", |
|
"Random Forest" |
|
], |
|
[ |
|
"Gradient Boosting", |
|
"Gradient Boosting" |
|
], |
|
[ |
|
"Logistic Regression", |
|
"Logistic Regression" |
|
], |
|
[ |
|
"Ridge Classifier", |
|
"Ridge" |
|
], |
|
[ |
|
"Naive Bayes", |
|
"Lasso" |
|
], |
|
[ |
|
"SVM", |
|
"Support Vector Regression" |
|
], |
|
[ |
|
"Nearest Neighbors", |
|
"Linear Regressor" |
|
] |
|
], |
|
"similarity_score": 1.0, |
|
"table_image": "images/1507.02188v1/table_0.png", |
|
"page_image": "pages/1507.02188v1/page_5.png" |
|
}, |
|
{ |
|
"id": 1, |
|
"page": 6, |
|
"bounding_box": [ |
|
138.7310028076172, |
|
128.52099609375, |
|
473.2690124511719, |
|
212.20697021484375 |
|
], |
|
"latex_content": "\\begin{table}[H]\n\\caption{Datasets used for testing AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l | p{5cm} |}\n \\hline\n \\textbf{Dataset} & \\textbf{No. of Variables} & \\textbf{Task Type} \\\\ \\hline\n MNIST & 784 & Multiclass Classification \\\\ \\hline\n Newsgroup-20 & \\textasciitilde 100k & Multiclass Classification \\\\ \\hline\n Adult & 14 & Binary Classification\\\\ \\hline\n Smartphone & 561 & Binary Classification \\\\ \\hline\n Housing & 14 & Regression \\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Dataset", |
|
"No. of Variables", |
|
"Task Type" |
|
], |
|
[ |
|
"MNIST", |
|
"784", |
|
"Multiclass Classification" |
|
], |
|
[ |
|
"Newsgroup-20", |
|
"\u02dc100k", |
|
"Multiclass Classification" |
|
], |
|
[ |
|
"Adult", |
|
"14", |
|
"Binary Classification" |
|
], |
|
[ |
|
"Smartphone", |
|
"561", |
|
"Binary Classification" |
|
], |
|
[ |
|
"Housing", |
|
"14", |
|
"Regression" |
|
] |
|
], |
|
"similarity_score": 0.9622641509433962, |
|
"table_image": "images/1507.02188v1/table_1.png", |
|
"page_image": "pages/1507.02188v1/page_6.png" |
|
}, |
|
{ |
|
"id": 2, |
|
"page": 7, |
|
"bounding_box": [ |
|
208.1280059814453, |
|
91.06097412109375, |
|
403.87200927734375, |
|
160.79901123046875 |
|
], |
|
"latex_content": "\\begin{table}[H]\n\\caption{Results on MNIST dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Accuracy Score} \\\\ \\hline\n Convnets & 99.8\\% \\\\ \\hline\n hyperopt-sklearn & 98.7\\% \\\\ \\hline\n libsvm grid-search & 98.6\\%\\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{96\\%}\\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Algorithm", |
|
"Accuracy Score" |
|
], |
|
[ |
|
"Convnets", |
|
"99.8%" |
|
], |
|
[ |
|
"hyperopt-sklearn", |
|
"98.7%" |
|
], |
|
[ |
|
"libsvm grid-search", |
|
"98.6%" |
|
], |
|
[ |
|
"AutoCompete", |
|
"96%" |
|
] |
|
], |
|
"similarity_score": 0.9801980198019802, |
|
"table_image": "images/1507.02188v1/table_2.png", |
|
"page_image": "pages/1507.02188v1/page_7.png" |
|
}, |
|
{ |
|
"id": 3, |
|
"page": 7, |
|
"bounding_box": [ |
|
177.53799438476562, |
|
258.9730224609375, |
|
434.46216837565106, |
|
328.71099853515625 |
|
], |
|
"latex_content": "\\begin{table}[H]\n\\caption{Results on Newsgroups-20 dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Weighted Average F1 Score} \\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{0.864}\\\\ \\hline\n hyperopt-sklearn & 0.856 \\\\ \\hline\n SVMTorch & 0.848 \\\\ \\hline\n LibSVM & 0.843 \\\\ \\hline\n \n \\end{tabular}\n\\end{center}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Algorithm", |
|
"Weighted Average F1 Score" |
|
], |
|
[ |
|
"AutoCompete", |
|
"0.864" |
|
], |
|
[ |
|
"hyperopt-sklearn", |
|
"0.856" |
|
], |
|
[ |
|
"SVMTorch", |
|
"0.848" |
|
], |
|
[ |
|
"LibSVM", |
|
"0.843" |
|
] |
|
], |
|
"similarity_score": 1.0, |
|
"table_image": "images/1507.02188v1/table_3.png", |
|
"page_image": "pages/1507.02188v1/page_7.png" |
|
}, |
|
{ |
|
"id": 4, |
|
"page": 7, |
|
"bounding_box": [ |
|
154.718994140625, |
|
466.9259948730469, |
|
457.28114536830356, |
|
550.6119995117188 |
|
], |
|
"latex_content": "\\begin{table}[H]\n\\caption{Selected pipeline and evaluation score for different datasets}\n\\begin{center}\n \\begin{tabular}{ | l | l | l |}\n \\hline\n \\textbf{Dataset} & \\textbf{Selected Pipeline} & \\textbf{Evaluation Score} \\\\ \\hline\n Smartphone & Logistic Regression & 0.921 (AUC) \\\\ \\hline\n\tHousing & RF(Features) + SVR & 2.3 (RMSE) \\\\ \\hline \n\tMNIST & PCA + RF & 0.96 (Accuracy) \\\\ \\hline\n\tNewsgroup-20 & TFIDF + LR & 0.864 (Weighted F1) \\\\ \\hline\n\tAdult & Model Stacker & 0.85 (AUC) \\\\ \\hline \n \\end{tabular}\n\\end{center}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Dataset", |
|
"Selected Pipeline", |
|
"Evaluation Score" |
|
], |
|
[ |
|
"Smartphone", |
|
"Logistic Regression", |
|
"0.921 (AUC)" |
|
], |
|
[ |
|
"Housing", |
|
"RF(Features) + SVR", |
|
"2.3 (RMSE)" |
|
], |
|
[ |
|
"MNIST", |
|
"PCA + RF", |
|
"0.96 (Accuracy)" |
|
], |
|
[ |
|
"Newsgroup-20", |
|
"TFIDF + LR", |
|
"0.864 (Weighted F1)" |
|
], |
|
[ |
|
"Adult", |
|
"Model Stacker", |
|
"0.85 (AUC)" |
|
] |
|
], |
|
"similarity_score": 1.0, |
|
"table_image": "images/1507.02188v1/table_4.png", |
|
"page_image": "pages/1507.02188v1/page_7.png" |
|
} |
|
] |