staghado's picture
Upload folder using huggingface_hub
c633a0a verified
raw
history blame
6.67 kB
[
{
"id": 0,
"page": 5,
"bounding_box": [
184.66600036621094,
198.38800048828125,
427.3340148925781,
309.968994140625
],
"latex_content": "\\begin{table}[H]\n\\caption{Classification and regression modules present in the current AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Classification} & \\textbf{Regression} \\\\ \\hline\n Random Forest & Random Forest \\\\ \\hline\n Gradient Boosting & Gradient Boosting \\\\ \\hline\n Logistic Regression & Logistic Regression \\\\ \\hline\n Ridge Classifier & Ridge \\\\ \\hline\n Naive Bayes & Lasso \\\\ \\hline\n SVM & Support Vector Regression\\\\ \\hline\n Nearest Neighbors & Linear Regressor \\\\ \\hline\n\n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Classification",
"Regression"
],
[
"Random Forest",
"Random Forest"
],
[
"Gradient Boosting",
"Gradient Boosting"
],
[
"Logistic Regression",
"Logistic Regression"
],
[
"Ridge Classifier",
"Ridge"
],
[
"Naive Bayes",
"Lasso"
],
[
"SVM",
"Support Vector Regression"
],
[
"Nearest Neighbors",
"Linear Regressor"
]
],
"similarity_score": 1.0,
"table_image": "images/1507.02188v1/table_0.png",
"page_image": "pages/1507.02188v1/page_5.png"
},
{
"id": 1,
"page": 6,
"bounding_box": [
138.7310028076172,
128.52099609375,
473.2690124511719,
212.20697021484375
],
"latex_content": "\\begin{table}[H]\n\\caption{Datasets used for testing AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l | p{5cm} |}\n \\hline\n \\textbf{Dataset} & \\textbf{No. of Variables} & \\textbf{Task Type} \\\\ \\hline\n MNIST & 784 & Multiclass Classification \\\\ \\hline\n Newsgroup-20 & \\textasciitilde 100k & Multiclass Classification \\\\ \\hline\n Adult & 14 & Binary Classification\\\\ \\hline\n Smartphone & 561 & Binary Classification \\\\ \\hline\n Housing & 14 & Regression \\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Dataset",
"No. of Variables",
"Task Type"
],
[
"MNIST",
"784",
"Multiclass Classification"
],
[
"Newsgroup-20",
"\u02dc100k",
"Multiclass Classification"
],
[
"Adult",
"14",
"Binary Classification"
],
[
"Smartphone",
"561",
"Binary Classification"
],
[
"Housing",
"14",
"Regression"
]
],
"similarity_score": 0.9622641509433962,
"table_image": "images/1507.02188v1/table_1.png",
"page_image": "pages/1507.02188v1/page_6.png"
},
{
"id": 2,
"page": 7,
"bounding_box": [
208.1280059814453,
91.06097412109375,
403.87200927734375,
160.79901123046875
],
"latex_content": "\\begin{table}[H]\n\\caption{Results on MNIST dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Accuracy Score} \\\\ \\hline\n Convnets & 99.8\\% \\\\ \\hline\n hyperopt-sklearn & 98.7\\% \\\\ \\hline\n libsvm grid-search & 98.6\\%\\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{96\\%}\\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Algorithm",
"Accuracy Score"
],
[
"Convnets",
"99.8%"
],
[
"hyperopt-sklearn",
"98.7%"
],
[
"libsvm grid-search",
"98.6%"
],
[
"AutoCompete",
"96%"
]
],
"similarity_score": 0.9801980198019802,
"table_image": "images/1507.02188v1/table_2.png",
"page_image": "pages/1507.02188v1/page_7.png"
},
{
"id": 3,
"page": 7,
"bounding_box": [
177.53799438476562,
258.9730224609375,
434.46216837565106,
328.71099853515625
],
"latex_content": "\\begin{table}[H]\n\\caption{Results on Newsgroups-20 dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Weighted Average F1 Score} \\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{0.864}\\\\ \\hline\n hyperopt-sklearn & 0.856 \\\\ \\hline\n SVMTorch & 0.848 \\\\ \\hline\n LibSVM & 0.843 \\\\ \\hline\n \n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Algorithm",
"Weighted Average F1 Score"
],
[
"AutoCompete",
"0.864"
],
[
"hyperopt-sklearn",
"0.856"
],
[
"SVMTorch",
"0.848"
],
[
"LibSVM",
"0.843"
]
],
"similarity_score": 1.0,
"table_image": "images/1507.02188v1/table_3.png",
"page_image": "pages/1507.02188v1/page_7.png"
},
{
"id": 4,
"page": 7,
"bounding_box": [
154.718994140625,
466.9259948730469,
457.28114536830356,
550.6119995117188
],
"latex_content": "\\begin{table}[H]\n\\caption{Selected pipeline and evaluation score for different datasets}\n\\begin{center}\n \\begin{tabular}{ | l | l | l |}\n \\hline\n \\textbf{Dataset} & \\textbf{Selected Pipeline} & \\textbf{Evaluation Score} \\\\ \\hline\n Smartphone & Logistic Regression & 0.921 (AUC) \\\\ \\hline\n\tHousing & RF(Features) + SVR & 2.3 (RMSE) \\\\ \\hline \n\tMNIST & PCA + RF & 0.96 (Accuracy) \\\\ \\hline\n\tNewsgroup-20 & TFIDF + LR & 0.864 (Weighted F1) \\\\ \\hline\n\tAdult & Model Stacker & 0.85 (AUC) \\\\ \\hline \n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Dataset",
"Selected Pipeline",
"Evaluation Score"
],
[
"Smartphone",
"Logistic Regression",
"0.921 (AUC)"
],
[
"Housing",
"RF(Features) + SVR",
"2.3 (RMSE)"
],
[
"MNIST",
"PCA + RF",
"0.96 (Accuracy)"
],
[
"Newsgroup-20",
"TFIDF + LR",
"0.864 (Weighted F1)"
],
[
"Adult",
"Model Stacker",
"0.85 (AUC)"
]
],
"similarity_score": 1.0,
"table_image": "images/1507.02188v1/table_4.png",
"page_image": "pages/1507.02188v1/page_7.png"
}
]