[ { "id": 0, "page": 5, "bounding_box": [ 184.66600036621094, 198.38800048828125, 427.3340148925781, 309.968994140625 ], "latex_content": "\\begin{table}[H]\n\\caption{Classification and regression modules present in the current AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Classification} & \\textbf{Regression} \\\\ \\hline\n Random Forest & Random Forest \\\\ \\hline\n Gradient Boosting & Gradient Boosting \\\\ \\hline\n Logistic Regression & Logistic Regression \\\\ \\hline\n Ridge Classifier & Ridge \\\\ \\hline\n Naive Bayes & Lasso \\\\ \\hline\n SVM & Support Vector Regression\\\\ \\hline\n Nearest Neighbors & Linear Regressor \\\\ \\hline\n\n \\end{tabular}\n\\end{center}\n\\end{table}", "extracted_content": [ [ "Classification", "Regression" ], [ "Random Forest", "Random Forest" ], [ "Gradient Boosting", "Gradient Boosting" ], [ "Logistic Regression", "Logistic Regression" ], [ "Ridge Classifier", "Ridge" ], [ "Naive Bayes", "Lasso" ], [ "SVM", "Support Vector Regression" ], [ "Nearest Neighbors", "Linear Regressor" ] ], "similarity_score": 1.0, "table_image": "images/1507.02188v1/table_0.png", "page_image": "pages/1507.02188v1/page_5.png" }, { "id": 1, "page": 6, "bounding_box": [ 138.7310028076172, 128.52099609375, 473.2690124511719, 212.20697021484375 ], "latex_content": "\\begin{table}[H]\n\\caption{Datasets used for testing AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l | p{5cm} |}\n \\hline\n \\textbf{Dataset} & \\textbf{No. of Variables} & \\textbf{Task Type} \\\\ \\hline\n MNIST & 784 & Multiclass Classification \\\\ \\hline\n Newsgroup-20 & \\textasciitilde 100k & Multiclass Classification \\\\ \\hline\n Adult & 14 & Binary Classification\\\\ \\hline\n Smartphone & 561 & Binary Classification \\\\ \\hline\n Housing & 14 & Regression \\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}", "extracted_content": [ [ "Dataset", "No. of Variables", "Task Type" ], [ "MNIST", "784", "Multiclass Classification" ], [ "Newsgroup-20", "\u02dc100k", "Multiclass Classification" ], [ "Adult", "14", "Binary Classification" ], [ "Smartphone", "561", "Binary Classification" ], [ "Housing", "14", "Regression" ] ], "similarity_score": 0.9622641509433962, "table_image": "images/1507.02188v1/table_1.png", "page_image": "pages/1507.02188v1/page_6.png" }, { "id": 2, "page": 7, "bounding_box": [ 208.1280059814453, 91.06097412109375, 403.87200927734375, 160.79901123046875 ], "latex_content": "\\begin{table}[H]\n\\caption{Results on MNIST dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Accuracy Score} \\\\ \\hline\n Convnets & 99.8\\% \\\\ \\hline\n hyperopt-sklearn & 98.7\\% \\\\ \\hline\n libsvm grid-search & 98.6\\%\\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{96\\%}\\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}", "extracted_content": [ [ "Algorithm", "Accuracy Score" ], [ "Convnets", "99.8%" ], [ "hyperopt-sklearn", "98.7%" ], [ "libsvm grid-search", "98.6%" ], [ "AutoCompete", "96%" ] ], "similarity_score": 0.9801980198019802, "table_image": "images/1507.02188v1/table_2.png", "page_image": "pages/1507.02188v1/page_7.png" }, { "id": 3, "page": 7, "bounding_box": [ 177.53799438476562, 258.9730224609375, 434.46216837565106, 328.71099853515625 ], "latex_content": "\\begin{table}[H]\n\\caption{Results on Newsgroups-20 dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Weighted Average F1 Score} \\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{0.864}\\\\ \\hline\n hyperopt-sklearn & 0.856 \\\\ \\hline\n SVMTorch & 0.848 \\\\ \\hline\n LibSVM & 0.843 \\\\ \\hline\n \n \\end{tabular}\n\\end{center}\n\\end{table}", "extracted_content": [ [ "Algorithm", "Weighted Average F1 Score" ], [ "AutoCompete", "0.864" ], [ "hyperopt-sklearn", "0.856" ], [ "SVMTorch", "0.848" ], [ "LibSVM", "0.843" ] ], "similarity_score": 1.0, "table_image": "images/1507.02188v1/table_3.png", "page_image": "pages/1507.02188v1/page_7.png" }, { "id": 4, "page": 7, "bounding_box": [ 154.718994140625, 466.9259948730469, 457.28114536830356, 550.6119995117188 ], "latex_content": "\\begin{table}[H]\n\\caption{Selected pipeline and evaluation score for different datasets}\n\\begin{center}\n \\begin{tabular}{ | l | l | l |}\n \\hline\n \\textbf{Dataset} & \\textbf{Selected Pipeline} & \\textbf{Evaluation Score} \\\\ \\hline\n Smartphone & Logistic Regression & 0.921 (AUC) \\\\ \\hline\n\tHousing & RF(Features) + SVR & 2.3 (RMSE) \\\\ \\hline \n\tMNIST & PCA + RF & 0.96 (Accuracy) \\\\ \\hline\n\tNewsgroup-20 & TFIDF + LR & 0.864 (Weighted F1) \\\\ \\hline\n\tAdult & Model Stacker & 0.85 (AUC) \\\\ \\hline \n \\end{tabular}\n\\end{center}\n\\end{table}", "extracted_content": [ [ "Dataset", "Selected Pipeline", "Evaluation Score" ], [ "Smartphone", "Logistic Regression", "0.921 (AUC)" ], [ "Housing", "RF(Features) + SVR", "2.3 (RMSE)" ], [ "MNIST", "PCA + RF", "0.96 (Accuracy)" ], [ "Newsgroup-20", "TFIDF + LR", "0.864 (Weighted F1)" ], [ "Adult", "Model Stacker", "0.85 (AUC)" ] ], "similarity_score": 1.0, "table_image": "images/1507.02188v1/table_4.png", "page_image": "pages/1507.02188v1/page_7.png" } ]