Dataset Card for "squad_es"

Dataset Summary

automatic translation of the Stanford Question Answering Dataset (SQuAD) v2 into Spanish

Supported Tasks

More Information Needed


More Information Needed

Dataset Structure

We show detailed information for up to 5 configurations of the dataset.

Data Instances


  • Size of downloaded dataset files: 37.47 MB
  • Size of the generated dataset: 90.25 MB
  • Total amount of disk used: 127.72 MB

An example of 'train' looks as follows.

This example was too long and was cropped:

    "answers": {
        "answer_start": [404, 356, 356],
        "text": ["Santa Clara, California", "Levi 's Stadium", "Levi 's Stadium en la Bahía de San Francisco en Santa Clara, California."]
    "context": "\"El Super Bowl 50 fue un partido de fútbol americano para determinar al campeón de la NFL para la temporada 2015. El campeón de ...",
    "id": "56be4db0acb8001400a502ee",
    "question": "¿Dónde tuvo lugar el Super Bowl 50?",
    "title": "Super Bowl _ 50"

Data Fields

The data fields are the same among all splits.


  • id: a string feature.
  • title: a string feature.
  • context: a string feature.
  • question: a string feature.
  • answers: a dictionary feature containing:
    • text: a string feature.
    • answer_start: a int32 feature.

Data Splits Sample Size

name train validation
v1.1.0 87595 10570

Dataset Creation

Curation Rationale

More Information Needed

Source Data

More Information Needed


More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

       author = {Casimiro Pio , Carrino and  Marta R. , Costa-jussa and  Jose A. R. , Fonollosa},
        title = "{Automatic Spanish Translation of the SQuAD Dataset for Multilingual
Question Answering}",
      journal = {arXiv e-prints},
         year = 2019,
          eid = {arXiv:1912.05200v1},
        pages = {arXiv:1912.05200v1},
archivePrefix = {arXiv},
       eprint = {1912.05200v2},


Thanks to @patrickvonplaten, @thomwolf, @albertvillanova, @lewtun for adding this dataset.

Update on GitHub
Explore dataset Edit Model Tags

Models trained or fine-tuned on squad_es

None yet