Datasets:

Task Categories: audio-classification
Languages: en
Multilinguality: monolingual
Licenses: cc-by-4-0
Language Creators: crowdsourced
Annotations Creators: other
Source Datasets: original
Dataset Preview Go to dataset viewer
file (string)audio (audio)label (class label)is_unknown (bool)speaker_id (string)utterance_id (int)
bed/4a294341_nohash_0.wav
20 (bed)
true
4a294341
0
bed/43f57297_nohash_0.wav
20 (bed)
true
43f57297
0
bed/f9af823e_nohash_1.wav
20 (bed)
true
f9af823e
1
bed/9ff2d2f4_nohash_0.wav
20 (bed)
true
9ff2d2f4
0
bed/651d108f_nohash_0.wav
20 (bed)
true
651d108f
0
bed/810c99be_nohash_0.wav
20 (bed)
true
810c99be
0
bed/6a1908f8_nohash_0.wav
20 (bed)
true
6a1908f8
0
bed/179a61b7_nohash_0.wav
20 (bed)
true
179a61b7
0
bed/edd8bfe3_nohash_0.wav
20 (bed)
true
edd8bfe3
0
bed/215699ff_nohash_1.wav
20 (bed)
true
215699ff
1
bed/14872d06_nohash_0.wav
20 (bed)
true
14872d06
0
bed/d85270c1_nohash_1.wav
20 (bed)
true
d85270c1
1
bed/18a8f03f_nohash_0.wav
20 (bed)
true
18a8f03f
0
bed/47565088_nohash_2.wav
20 (bed)
true
47565088
2
bed/62581901_nohash_1.wav
20 (bed)
true
62581901
1
bed/11860c84_nohash_0.wav
20 (bed)
true
11860c84
0
bed/62ef962d_nohash_0.wav
20 (bed)
true
62ef962d
0
bed/92b2bf59_nohash_2.wav
20 (bed)
true
92b2bf59
2
bed/cd911ace_nohash_0.wav
20 (bed)
true
cd911ace
0
bed/5d9bb361_nohash_0.wav
20 (bed)
true
5d9bb361
0
bed/f638a812_nohash_1.wav
20 (bed)
true
f638a812
1
bed/f21893dc_nohash_1.wav
20 (bed)
true
f21893dc
1
bed/42e3f068_nohash_0.wav
20 (bed)
true
42e3f068
0
bed/d94eb94f_nohash_0.wav
20 (bed)
true
d94eb94f
0
bed/716757ce_nohash_0.wav
20 (bed)
true
716757ce
0
bed/2d92f18b_nohash_1.wav
20 (bed)
true
2d92f18b
1
bed/b12bef84_nohash_0.wav
20 (bed)
true
b12bef84
0
bed/46a153d8_nohash_0.wav
20 (bed)
true
46a153d8
0
bed/02746d24_nohash_0.wav
20 (bed)
true
02746d24
0
bed/b3bb4dd6_nohash_1.wav
20 (bed)
true
b3bb4dd6
1
bed/b00c4c53_nohash_0.wav
20 (bed)
true
b00c4c53
0
bed/1365dd89_nohash_0.wav
20 (bed)
true
1365dd89
0
bed/902258bb_nohash_1.wav
20 (bed)
true
902258bb
1
bed/03c96658_nohash_0.wav
20 (bed)
true
03c96658
0
bed/0b77ee66_nohash_0.wav
20 (bed)
true
0b77ee66
0
bed/4407ba92_nohash_1.wav
20 (bed)
true
4407ba92
1
bed/7f17667c_nohash_1.wav
20 (bed)
true
7f17667c
1
bed/637c702a_nohash_0.wav
20 (bed)
true
637c702a
0
bed/3f339c33_nohash_0.wav
20 (bed)
true
3f339c33
0
bed/da76aa58_nohash_0.wav
20 (bed)
true
da76aa58
0
bed/035de8fe_nohash_0.wav
20 (bed)
true
035de8fe
0
bed/15c371c7_nohash_0.wav
20 (bed)
true
15c371c7
0
bed/0e5193e6_nohash_0.wav
20 (bed)
true
0e5193e6
0
bed/e5d2e09d_nohash_0.wav
20 (bed)
true
e5d2e09d
0
bed/0f7dc557_nohash_0.wav
20 (bed)
true
0f7dc557
0
bed/d8a5ace5_nohash_1.wav
20 (bed)
true
d8a5ace5
1
bed/9d050657_nohash_0.wav
20 (bed)
true
9d050657
0
bed/30f31e42_nohash_0.wav
20 (bed)
true
30f31e42
0
bed/df6bd83f_nohash_0.wav
20 (bed)
true
df6bd83f
0
bed/db7c95b0_nohash_1.wav
20 (bed)
true
db7c95b0
1
bed/44b5720d_nohash_1.wav
20 (bed)
true
44b5720d
1
bed/a2b16113_nohash_2.wav
20 (bed)
true
a2b16113
2
bed/493392c6_nohash_0.wav
20 (bed)
true
493392c6
0
bed/7ff4fc72_nohash_0.wav
20 (bed)
true
7ff4fc72
0
bed/ab71c9a7_nohash_0.wav
20 (bed)
true
ab71c9a7
0
bed/919d3c0e_nohash_0.wav
20 (bed)
true
919d3c0e
0
bed/f0edc767_nohash_0.wav
20 (bed)
true
f0edc767
0
bed/f804cbb3_nohash_0.wav
20 (bed)
true
f804cbb3
0
bed/30065f33_nohash_0.wav
20 (bed)
true
30065f33
0
bed/4c13fe25_nohash_1.wav
20 (bed)
true
4c13fe25
1
bed/9ce7a419_nohash_0.wav
20 (bed)
true
9ce7a419
0
bed/479e64cc_nohash_0.wav
20 (bed)
true
479e64cc
0
bed/ffbb695d_nohash_0.wav
20 (bed)
true
ffbb695d
0
bed/7c75a504_nohash_0.wav
20 (bed)
true
7c75a504
0
bed/51995cea_nohash_0.wav
20 (bed)
true
51995cea
0
bed/5705a0f9_nohash_1.wav
20 (bed)
true
5705a0f9
1
bed/784e281a_nohash_0.wav
20 (bed)
true
784e281a
0
bed/708a9569_nohash_0.wav
20 (bed)
true
708a9569
0
bed/1c3f50ad_nohash_0.wav
20 (bed)
true
1c3f50ad
0
bed/0ff728b5_nohash_0.wav
20 (bed)
true
0ff728b5
0
bed/8a0457c9_nohash_1.wav
20 (bed)
true
8a0457c9
1
bed/86648261_nohash_0.wav
20 (bed)
true
86648261
0
bed/d2f4f431_nohash_0.wav
20 (bed)
true
d2f4f431
0
bed/34e8c726_nohash_0.wav
20 (bed)
true
34e8c726
0
bed/32efce64_nohash_0.wav
20 (bed)
true
32efce64
0
bed/9d8ac38b_nohash_0.wav
20 (bed)
true
9d8ac38b
0
bed/4b25f620_nohash_0.wav
20 (bed)
true
4b25f620
0
bed/6366f61a_nohash_0.wav
20 (bed)
true
6366f61a
0
bed/9b027ecf_nohash_1.wav
20 (bed)
true
9b027ecf
1
bed/c8db14a8_nohash_0.wav
20 (bed)
true
c8db14a8
0
bed/94e6864f_nohash_0.wav
20 (bed)
true
94e6864f
0
bed/9ab86dd0_nohash_0.wav
20 (bed)
true
9ab86dd0
0
bed/46114b4e_nohash_0.wav
20 (bed)
true
46114b4e
0
bed/2bdbe5f7_nohash_0.wav
20 (bed)
true
2bdbe5f7
0
bed/f9bdf10e_nohash_1.wav
20 (bed)
true
f9bdf10e
1
bed/8ea22de7_nohash_0.wav
20 (bed)
true
8ea22de7
0
bed/85b877b5_nohash_0.wav
20 (bed)
true
85b877b5
0
bed/9efe5140_nohash_0.wav
20 (bed)
true
9efe5140
0
bed/8830e17f_nohash_0.wav
20 (bed)
true
8830e17f
0
bed/d78858d9_nohash_0.wav
20 (bed)
true
d78858d9
0
bed/ad89eb1e_nohash_0.wav
20 (bed)
true
ad89eb1e
0
bed/39c13eed_nohash_0.wav
20 (bed)
true
39c13eed
0
bed/1625acd8_nohash_0.wav
20 (bed)
true
1625acd8
0
bed/62ef962d_nohash_1.wav
20 (bed)
true
62ef962d
1
bed/0a7c2a8d_nohash_0.wav
20 (bed)
true
0a7c2a8d
0
bed/a8cb6dda_nohash_0.wav
20 (bed)
true
a8cb6dda
0
bed/da76aa58_nohash_1.wav
20 (bed)
true
da76aa58
1
bed/28612180_nohash_0.wav
20 (bed)
true
28612180
0
bed/6094340e_nohash_0.wav
20 (bed)
true
6094340e
0
bed/305776dd_nohash_0.wav
20 (bed)
true
305776dd
0
End of preview (truncated to 100 rows)

Dataset Card for SpeechCommands

Dataset Summary

This is a set of one-second .wav audio files, each containing a single spoken English word or background noise. These words are from a small set of commands, and are spoken by a variety of different speakers. This data set is designed to help train simple machine learning models. It is covered in more detail at https://arxiv.org/abs/1804.03209.

Version 0.01 of the data set (configuration "v0.01") was released on August 3rd 2017 and contains 64,727 audio files.

Version 0.02 of the data set (configuration "v0.02") was released on April 11th 2018 and contains 105,829 audio files.

Supported Tasks and Leaderboards

  • keyword-spotting: the dataset can be used to train and evaluate keyword spotting systems. The task is to detect preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial.

Languages

The language data in SpeechCommands is in English (BCP-47 en).

Dataset Structure

Data Instances

Example of a core word ("label" is a word, "is_unknown" is False):

{
  "file": "no/7846fd85_nohash_0.wav", 
  "audio": {
    "path": "no/7846fd85_nohash_0.wav", 
    "array": array([ -0.00021362, -0.00027466, -0.00036621, ...,  0.00079346,
          0.00091553,  0.00079346]), 
    "sampling_rate": 16000
    },
  "label": 1,  # "no"
  "is_unknown": False,
  "speaker_id": "7846fd85",
  "utterance_id": 0
}

Example of an auxiliary word ("label" is a word, "is_unknown" is True)

{
  "file": "tree/8b775397_nohash_0.wav", 
  "audio": {
    "path": "tree/8b775397_nohash_0.wav", 
    "array": array([ -0.00854492, -0.01339722, -0.02026367, ...,  0.00274658,
          0.00335693,  0.0005188]), 
    "sampling_rate": 16000
    },
  "label": 28,  # "tree"
  "is_unknown": True,
  "speaker_id": "1b88bf70",
  "utterance_id": 0
}

Example of background noise (_silence_) class:

{
  "file": "_silence_/doing_the_dishes.wav", 
  "audio": {
    "path": "_silence_/doing_the_dishes.wav", 
    "array": array([ 0.        ,  0.        ,  0.        , ..., -0.00592041,
         -0.00405884, -0.00253296]), 
    "sampling_rate": 16000
    }, 
  "label": 30,  # "_silence_"
  "is_unknown": False,
  "speaker_id": "None",
  "utterance_id": 0  # doesn't make sense here
}

Data Fields

  • file: relative audio filename inside the original archive.
  • audio: dictionary containing a relative audio filename, a decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audios might take a significant amount of time. Thus, it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].
  • label: either word pronounced in an audio sample or background noise (_silence_) class. Note that it's an integer value corresponding to the class name.
  • is_unknown: if a word is auxiliary. Equals to False if a word is a core word or _silence_, True if a word is an auxiliary word.
  • speaker_id: unique id of a speaker. Equals to None if label is _silence_.
  • utterance_id: incremental id of a word utterance within the same speaker.

Data Splits

The dataset has two versions (= configurations): "v0.01" and "v0.02". "v0.02" contains more words (see section Source Data for more details).

train validation test
v0.01 51093 6799 3081
v0.02 84848 9982 4890

Note that in train and validation sets examples of _silence_ class are longer than 1 second. You can use the following code to sample 1-second examples from the longer ones:

def sample_noise(example):
    # Use this function to extract random 1 sec slices of each _silence_ utterance,
    # e.g. inside `torch.utils.data.Dataset.__getitem__()`
    from random import randint

    if example["label"] == "_silence_":
        random_offset = randint(0, len(example["speech"]) - example["sample_rate"] - 1)
        example["speech"] = example["speech"][random_offset : random_offset + example["sample_rate"]]

    return example

Dataset Creation

Curation Rationale

The primary goal of the dataset is to provide a way to build and test small models that can detect a single word from a set of target words and differentiate it from background noise or unrelated speech with as few false positives as possible.

Source Data

Initial Data Collection and Normalization

The audio files were collected using crowdsourcing, see aiyprojects.withgoogle.com/open_speech_recording for some of the open source audio collection code that was used. The goal was to gather examples of people speaking single-word commands, rather than conversational sentences, so they were prompted for individual words over the course of a five minute session.

In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".

In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".

In both versions, ten of them are used as commands by convention: "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go". Other words are considered to be auxiliary (in current implementation it is marked by True value of "is_unknown" feature). Their function is to teach a model to distinguish core words from unrecognized ones.

The _silence_ label contains a set of longer audio clips that are either recordings or a mathematical simulation of noise.

Who are the source language producers?

The audio files were collected using crowdsourcing.

Annotations

Annotation process

Labels are the list of words prepared in advances. Speakers were prompted for individual words over the course of a five minute session.

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

Creative Commons BY 4.0 License ((CC-BY-4.0)[https://creativecommons.org/licenses/by/4.0/legalcode]).

Citation Information

@article{speechcommandsv2,
   author = { {Warden}, P.},
    title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}",
  journal = {ArXiv e-prints},
  archivePrefix = "arXiv",
  eprint = {1804.03209},
  primaryClass = "cs.CL",
  keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction},
    year = 2018,
    month = apr,
    url = {https://arxiv.org/abs/1804.03209},
}

Contributions

Thanks to @polinaeterna for adding this dataset.

Update on GitHub