Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
< 1K
ArXiv:
License:
File size: 5,112 Bytes
0e4202f c867c4d 0e4202f c867c4d 0e4202f c867c4d 0e4202f 3be17b8 0e4202f 3be17b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- en
licenses:
- cc0-1-0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
paperswithcode_id: snips
---
# Dataset Card for Snips Built In Intents
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents
- **Repository:** https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents
- **Paper:** https://arxiv.org/abs/1805.10190
- **Point of Contact:** The Snips team has joined Sonos in November 2019. These open datasets remain available and their access is now managed by the Sonos Voice Experience Team. Please email sve-research@sonos.com with any question.
### Dataset Summary
Snips' built in intents dataset was initially used to compare different voice assistants and released as a public dataset hosted at
https://github.com/sonos/nlu-benchmark in folder 2016-12-built-in-intents. The dataset contains 328 utterances over 10 intent classes.
A related Medium post is https://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-d35be6ce568d.
### Supported Tasks and Leaderboards
There are no related shared tasks that we are aware of.
### Languages
English
## Dataset Structure
### Data Instances
The dataset contains 328 utterances over 10 intent classes. Each sample looks like:
`{'label': 8, 'text': 'Transit directions to Barcelona Pizza.'}`
### Data Fields
- `text`: The text utterance expressing some user intent.
- `label`: The intent label of the piece of text utterance.
### Data Splits
The source data is not split.
## Dataset Creation
### Curation Rationale
The dataset was originally created to compare the performance of a number of voice assistants. However, the labelled utterances are useful
for developing and benchmarking text chatbots as well.
### Source Data
#### Initial Data Collection and Normalization
It is not clear how the data was collected. From the Medium post: `The benchmark relies on a set of 328 queries built by the business team
at Snips, and kept secret from data scientists and engineers throughout the development of the solution.`
#### Who are the source language producers?
Originally prepared by snips.ai. The Snips team has since joined Sonos in November 2019. These open datasets remain available and their
access is now managed by the Sonos Voice Experience Team. Please email sve-research@sonos.com with any question.
### Annotations
#### Annotation process
It is not clear how the data was collected. From the Medium post: `The benchmark relies on a set of 328 queries built by the business team
at Snips, and kept secret from data scientists and engineers throughout the development of the solution.`
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Originally prepared by snips.ai. The Snips team has since joined Sonos in November 2019. These open datasets remain available and their
access is now managed by the Sonos Voice Experience Team. Please email sve-research@sonos.com with any question.
### Licensing Information
The source data is licensed under Creative Commons Zero v1.0 Universal.
### Citation Information
Any publication based on these datasets must include a full citation to the following paper in which the results were published by the Snips Team:
Coucke A. et al., "Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces." CoRR 2018,
https://arxiv.org/abs/1805.10190
### Contributions
Thanks to [@bduvenhage](https://github.com/bduvenhage) for adding this dataset. |