File size: 14,659 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import json
import os
import sys
import types

import torch


def add_arguments(parser):
    group = parser.add_argument_group(title="Megatron loader")

    group.add_argument(
        "--true_vocab_size",
        type=int,
        default=None,
        help="original size of vocab, if specified will trim padding from embedding table.",
    )
    group.add_argument(
        "--vocab_file",
        type=str,
        default=None,
        help="Path to the vocab file. If specified will use this to get vocab size and "
        "trim padding from the embedding table.",
    )
    group.add_argument(
        "--megatron_path",
        type=str,
        default=None,
        help="Base directory of deepspeed repository",
    )


def _load_checkpoint(queue, args):
    # Search in directory above this
    sys.path.append(
        os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
    )
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
        import megatron.arguments
        from megatron import fused_kernels
        from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint
        from megatron.core import mpu
        from megatron.global_vars import set_global_variables
        from megatron.model import ModelType, module
        from megatron.model.enums import PositionEmbeddingType
    except ModuleNotFoundError:
        print(
            "Unable to import Megatron, please specify the path to Megatron using --megatron_path. Exiting."
        )
        queue.put("exit")
        exit(1)

    # We want all arguments to come from us
    sys.argv = [
        "script.py",
        "--no_masked_softmax_fusion",
        "--no_bias_gelu_fusion",
        "--no_bias_dropout_fusion",
        "--use_cpu_initialization",
        "--micro_batch_size",
        "1",
        "--no_load_optim",
        "--no_load_rng",
        "--no_save_optim",
        "--no_save_rng",
        "--no_initialization",
        "--load",
        args.load_dir,
    ]

    if args.bf16:
        sys.argv += ["--bf16"]

    margs = megatron.arguments.parse_args()
    margs = load_args_from_checkpoint(margs)

    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes
    margs.world_size = (
        margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size
    )

    margs = megatron.arguments.validate_args(margs)

    def check_for_arg(arg_name):
        if getattr(margs, arg_name, None) is None:
            print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
            print(f"Arguments: {margs}")
            queue.put("exit")
            exit(1)

    check_for_arg("tensor_model_parallel_size")
    check_for_arg("pipeline_model_parallel_size")
    check_for_arg("num_layers")
    check_for_arg("hidden_size")
    check_for_arg("seq_length")
    check_for_arg("num_attention_heads")
    check_for_arg("max_position_embeddings")
    check_for_arg("tokenizer_type")
    check_for_arg("iteration")
    check_for_arg("params_dtype")
    if args.model_type == "BERT":
        check_for_arg("bert_binary_head")

    # Determine how to make our models
    if args.model_type == "GPT":
        from pretrain_gpt import model_provider

        margs.model_type = ModelType.encoder_or_decoder
    elif args.model_type in {"falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"}:
        from finetune import model_provider

        margs.model_name = args.model_type
        margs.model_type = ModelType.encoder_or_decoder
        if args.model_type=="gemma":
            margs.kv_channels = args.kv_channels
    elif args.model_type == "BERT":
        from pretrain_bert import model_provider

        margs.model_type = ModelType.encoder_or_decoder
    else:
        raise Exception(f"unrecognized model type: {args.model_type}")

    # supress warning about torch.distributed not being initialized
    module.MegatronModule.embedding_warning_printed = True

    consumed_train_samples = None
    consumed_valid_samples = None

    def _get_models(count, dtype, pre_process, post_process):
        nonlocal consumed_train_samples
        nonlocal consumed_valid_samples
        models = []
        for rank in range(count):
            mpu.set_tensor_model_parallel_rank(rank)
            model_ = [model_provider(pre_process, post_process).to(dtype)]
            margs.consumed_train_samples = 0
            margs.consumed_valid_samples = 0
            load_checkpoint(model_, None, None)
            assert len(model_) == 1
            model_ = model_[0]
            if consumed_train_samples is not None:
                assert margs.consumed_train_samples == consumed_train_samples
            else:
                consumed_train_samples = margs.consumed_train_samples
            if consumed_valid_samples is not None:
                assert margs.consumed_valid_samples == consumed_valid_samples
            else:
                consumed_valid_samples = margs.consumed_valid_samples
            models.append(model_)
        return models

    if margs.num_layers_per_virtual_pipeline_stage is not None:
        print("Model with an interleaved pipeline schedule are not yet supported.")
        queue.put("exit")
        exit(1)

    set_global_variables(margs)
    mpu._DATA_PARALLEL_GROUP = 0
    mpu.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
    mpu.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
    fused_kernels.load(margs)

    # Get true (non-padded) vocab size
    if args.true_vocab_size is not None:
        true_vocab_size = args.true_vocab_size
    elif args.vocab_file is not None:
        vocab = json.load(open(args.vocab_file))
        true_vocab_size = len(vocab)
        if args.true_vocab_size is not None and true_vocab_size != args.true_vocab_size:
            print(
                "Both --true_vocab_size and --vocab_file specified and the vocab size does not match, aborting."
            )
            queue.put("exit")
            exit(1)
    else:
        true_vocab_size = None

    # short aliases
    tp_size = margs.tensor_model_parallel_size
    pp_size = margs.pipeline_model_parallel_size

    # metadata
    md = types.SimpleNamespace()
    md.model_type = args.model_type
    md.num_layers = margs.num_layers
    md.hidden_size = margs.hidden_size
    md.seq_length = margs.seq_length
    md.num_attention_heads = margs.num_attention_heads
    md.max_position_embeddings = margs.max_position_embeddings
    md.tokenizer_type = margs.tokenizer_type
    md.iteration = margs.iteration
    if args.model_type == "BERT":
        md.bert_binary_head = margs.bert_binary_head
    md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
    md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
    md.true_vocab_size = true_vocab_size
    md.make_vocab_size_divisible_by = margs.make_vocab_size_divisible_by
    md.num_attention_heads_kv = margs.num_attention_heads_kv
    md.parallel_attn = margs.parallel_attn
    md.parallel_layernorm = margs.parallel_layernorm
    md.use_flash_attn = margs.use_flash_attn
    md.hidden_dropout = margs.hidden_dropout
    md.lima_dropout = margs.lima_dropout
    md.use_bias = margs.use_bias
    md.use_rms_norm = margs.use_rms_norm
    md.ffn_hidden_size = margs.ffn_hidden_size
    md.glu_activation = margs.glu_activation
    md.tie_embed_logits = margs.tie_embed_logits
    md.params_dtype = margs.params_dtype
    md.sliding_window_size = margs.sliding_window_size
    md.kv_channels = margs.kv_channels
    if margs.position_embedding_type == PositionEmbeddingType.absolute:
        md.position_embedding_type = "absolute"
    elif margs.position_embedding_type == PositionEmbeddingType.rotary:
        md.position_embedding_type = "rotary"
    else:
        raise KeyError(f"Unknown position embedding {margs.position_embedding_type}")

    # Get first pipe stage
    mpu.set_pipeline_model_parallel_rank(0)
    post_process = pp_size == 1
    models = _get_models(tp_size, md.params_dtype, True, post_process)
    models_init = models

    md.consumed_train_samples = consumed_train_samples
    md.consumed_valid_samples = consumed_valid_samples
    queue.put(md)

    def queue_put(name, msg):
        print(f"sending {name}")
        msg["name"] = name
        queue.put(msg)

    message = {
        "word embeddings": torch.cat(
            [
                models[tp_rank].language_model.embedding.word_embeddings.weight.data
                for tp_rank in range(tp_size)
            ],
            dim=0,
        )
    }
    if margs.position_embedding_type == PositionEmbeddingType.absolute:
        message["position embeddings"] = models[
            0
        ].language_model.embedding.position_embeddings.weight.data

    queue_put("embeddings", message)

    # Get last pipe stage if lm_head needs to be sent
    if not margs.tie_embed_logits:
        mpu.set_pipeline_model_parallel_rank(pp_size - 1)
        pre_process = pp_size == 1
        if pre_process:
            models = models_init
        else:
            models = _get_models(tp_size, md.params_dtype, pre_process, True)
        models_final = models

        queue_put(
            "lm_head",
            {
                "lm_head": torch.cat(
                    [
                        models[tp_rank].language_model.lm_head.data
                        for tp_rank in range(tp_size)
                    ]
                )
            },
        )

    total_layer_num = 0
    for pp_rank in range(pp_size):
        # For later pipeline parallel ranks, make the new models
        mpu.set_pipeline_model_parallel_rank(pp_rank)
        post_process = pp_rank == pp_size - 1
        if pp_rank == 0:
            models = models_init
        elif pp_rank == pp_size - 1 and not md.tie_embed_logits:
            models = models_final
        else:
            models = _get_models(tp_size, md.params_dtype, False, post_process)

        for layer_num in range(len(models[0].language_model.encoder.layers)):
            message = {}

            # Get non-parallel tensors from tp_rank 0
            layer = models[0].language_model.encoder.layers[layer_num]
            message["input layernorm weight"] = layer.input_layernorm.weight.data
            if margs.parallel_layernorm:
                message["mlp layernorm weight"] = layer.mlp_layernorm.weight.data
            if not margs.use_rms_norm:
                message["input layernorm bias"] = layer.input_layernorm.bias.data
                if margs.parallel_layernorm:
                    message["mlp layernorm bias"] = layer.mlp_layernorm.bias.data
            if not margs.parallel_attn:
                message[
                    "post layernorm weight"
                ] = layer.post_attention_layernorm.weight.data
                if not margs.use_rms_norm:
                    message[
                        "post layernorm bias"
                    ] = layer.post_attention_layernorm.bias.data
            if margs.use_bias:
                message["dense bias"] = layer.self_attention.dense.bias.data
                message["mlp l1 bias"] = layer.mlp.dense_4h_to_h.bias.data

            # Grab all parallel tensors for this layer
            qkv_weight = []
            qkv_bias = []
            dense_weight = []
            mlp_l0_weight = []
            mlp_l0_bias = []
            mlp_l1_weight = []
            for tp_rank, model in enumerate(models):
                layer = model.language_model.encoder.layers[layer_num]
                qkv_weight.append(layer.self_attention.query_key_value.weight.data)
                if margs.use_bias:
                    qkv_bias.append(layer.self_attention.query_key_value.bias.data)
                dense_weight.append(layer.self_attention.dense.weight.data)
                mlp_l0_weight.append(layer.mlp.dense_h_to_4h.weight.data)
                if margs.use_bias:
                    mlp_l0_bias.append(layer.mlp.dense_h_to_4h.bias.data)
                mlp_l1_weight.append(layer.mlp.dense_4h_to_h.weight.data)

            # concat them
            message["qkv weight"] = torch.cat(qkv_weight, dim=0)
            if margs.use_bias:
                message["qkv bias"] = torch.cat(qkv_bias, dim=0)
            message["dense weight"] = torch.cat(dense_weight, dim=1)
            if margs.glu_activation is None:
                message["mlp l0 weight"] = torch.cat(mlp_l0_weight, dim=0)
            else:
                up_weights = []
                gate_weights = []
                for weight in mlp_l0_weight:
                    up, gate = torch.chunk(weight, 2, dim=0)
                    up_weights.append(up)
                    gate_weights.append(gate)
                message["mlp l0 weight"] = torch.cat(up_weights + gate_weights, dim=0)
            if margs.use_bias:
                message["mlp l0 bias"] = torch.cat(mlp_l0_bias, dim=0)
            message["mlp l1 weight"] = torch.cat(mlp_l1_weight, dim=1)

            queue_put(f"transformer layer {total_layer_num}", message)

            total_layer_num = total_layer_num + 1

    # Send final layernorm from tp_rank 0
    message = {"weight": models[0].language_model.encoder.final_layernorm.weight.data}
    if not margs.use_rms_norm:
        message["bias"] = models[0].language_model.encoder.final_layernorm.bias.data
    queue_put("final layernorm", message)

    # Send BERT lm head and binary head if it exists
    if md.model_type == "BERT":
        message = {
            "weight": models[0].language_model.pooler.dense.weight.data,
            "bias": models[0].language_model.pooler.dense.bias.data,
        }
        queue_put("pooler", message)

        message = {
            "dense weight": models[0].lm_head.dense.weight.data,
            "dense bias": models[0].lm_head.dense.bias.data,
            "layernorm weight": models[0].lm_head.layernorm.weight.data,
            "layernorm bias": models[0].lm_head.layernorm.bias.data,
        }
        queue_put("lm head", message)

        if args.model_type == "BERT" and md.bert_binary_head:
            print("Sending BERT Binary head")
            queue.put("binary head")
            message = {
                "weight": models[0].binary_head.weight.data,
                "bias": models[0].binary_head.bias.data,
            }
            queue_put("binary head", message)
    queue.put("done")


def load_checkpoint(queue, args):
    try:
        _load_checkpoint(queue, args)
    except:
        queue.put("exit")
        raise