File size: 14,659 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import json
import os
import sys
import types
import torch
def add_arguments(parser):
group = parser.add_argument_group(title="Megatron loader")
group.add_argument(
"--true_vocab_size",
type=int,
default=None,
help="original size of vocab, if specified will trim padding from embedding table.",
)
group.add_argument(
"--vocab_file",
type=str,
default=None,
help="Path to the vocab file. If specified will use this to get vocab size and "
"trim padding from the embedding table.",
)
group.add_argument(
"--megatron_path",
type=str,
default=None,
help="Base directory of deepspeed repository",
)
def _load_checkpoint(queue, args):
# Search in directory above this
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
if args.megatron_path is not None:
sys.path.insert(0, args.megatron_path)
try:
import megatron.arguments
from megatron import fused_kernels
from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint
from megatron.core import mpu
from megatron.global_vars import set_global_variables
from megatron.model import ModelType, module
from megatron.model.enums import PositionEmbeddingType
except ModuleNotFoundError:
print(
"Unable to import Megatron, please specify the path to Megatron using --megatron_path. Exiting."
)
queue.put("exit")
exit(1)
# We want all arguments to come from us
sys.argv = [
"script.py",
"--no_masked_softmax_fusion",
"--no_bias_gelu_fusion",
"--no_bias_dropout_fusion",
"--use_cpu_initialization",
"--micro_batch_size",
"1",
"--no_load_optim",
"--no_load_rng",
"--no_save_optim",
"--no_save_rng",
"--no_initialization",
"--load",
args.load_dir,
]
if args.bf16:
sys.argv += ["--bf16"]
margs = megatron.arguments.parse_args()
margs = load_args_from_checkpoint(margs)
# Arguments do sanity checks on the world size, but we don't care,
# so trick it into thinking we are plenty of processes
margs.world_size = (
margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size
)
margs = megatron.arguments.validate_args(margs)
def check_for_arg(arg_name):
if getattr(margs, arg_name, None) is None:
print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
print(f"Arguments: {margs}")
queue.put("exit")
exit(1)
check_for_arg("tensor_model_parallel_size")
check_for_arg("pipeline_model_parallel_size")
check_for_arg("num_layers")
check_for_arg("hidden_size")
check_for_arg("seq_length")
check_for_arg("num_attention_heads")
check_for_arg("max_position_embeddings")
check_for_arg("tokenizer_type")
check_for_arg("iteration")
check_for_arg("params_dtype")
if args.model_type == "BERT":
check_for_arg("bert_binary_head")
# Determine how to make our models
if args.model_type == "GPT":
from pretrain_gpt import model_provider
margs.model_type = ModelType.encoder_or_decoder
elif args.model_type in {"falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"}:
from finetune import model_provider
margs.model_name = args.model_type
margs.model_type = ModelType.encoder_or_decoder
if args.model_type=="gemma":
margs.kv_channels = args.kv_channels
elif args.model_type == "BERT":
from pretrain_bert import model_provider
margs.model_type = ModelType.encoder_or_decoder
else:
raise Exception(f"unrecognized model type: {args.model_type}")
# supress warning about torch.distributed not being initialized
module.MegatronModule.embedding_warning_printed = True
consumed_train_samples = None
consumed_valid_samples = None
def _get_models(count, dtype, pre_process, post_process):
nonlocal consumed_train_samples
nonlocal consumed_valid_samples
models = []
for rank in range(count):
mpu.set_tensor_model_parallel_rank(rank)
model_ = [model_provider(pre_process, post_process).to(dtype)]
margs.consumed_train_samples = 0
margs.consumed_valid_samples = 0
load_checkpoint(model_, None, None)
assert len(model_) == 1
model_ = model_[0]
if consumed_train_samples is not None:
assert margs.consumed_train_samples == consumed_train_samples
else:
consumed_train_samples = margs.consumed_train_samples
if consumed_valid_samples is not None:
assert margs.consumed_valid_samples == consumed_valid_samples
else:
consumed_valid_samples = margs.consumed_valid_samples
models.append(model_)
return models
if margs.num_layers_per_virtual_pipeline_stage is not None:
print("Model with an interleaved pipeline schedule are not yet supported.")
queue.put("exit")
exit(1)
set_global_variables(margs)
mpu._DATA_PARALLEL_GROUP = 0
mpu.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
mpu.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
fused_kernels.load(margs)
# Get true (non-padded) vocab size
if args.true_vocab_size is not None:
true_vocab_size = args.true_vocab_size
elif args.vocab_file is not None:
vocab = json.load(open(args.vocab_file))
true_vocab_size = len(vocab)
if args.true_vocab_size is not None and true_vocab_size != args.true_vocab_size:
print(
"Both --true_vocab_size and --vocab_file specified and the vocab size does not match, aborting."
)
queue.put("exit")
exit(1)
else:
true_vocab_size = None
# short aliases
tp_size = margs.tensor_model_parallel_size
pp_size = margs.pipeline_model_parallel_size
# metadata
md = types.SimpleNamespace()
md.model_type = args.model_type
md.num_layers = margs.num_layers
md.hidden_size = margs.hidden_size
md.seq_length = margs.seq_length
md.num_attention_heads = margs.num_attention_heads
md.max_position_embeddings = margs.max_position_embeddings
md.tokenizer_type = margs.tokenizer_type
md.iteration = margs.iteration
if args.model_type == "BERT":
md.bert_binary_head = margs.bert_binary_head
md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
md.true_vocab_size = true_vocab_size
md.make_vocab_size_divisible_by = margs.make_vocab_size_divisible_by
md.num_attention_heads_kv = margs.num_attention_heads_kv
md.parallel_attn = margs.parallel_attn
md.parallel_layernorm = margs.parallel_layernorm
md.use_flash_attn = margs.use_flash_attn
md.hidden_dropout = margs.hidden_dropout
md.lima_dropout = margs.lima_dropout
md.use_bias = margs.use_bias
md.use_rms_norm = margs.use_rms_norm
md.ffn_hidden_size = margs.ffn_hidden_size
md.glu_activation = margs.glu_activation
md.tie_embed_logits = margs.tie_embed_logits
md.params_dtype = margs.params_dtype
md.sliding_window_size = margs.sliding_window_size
md.kv_channels = margs.kv_channels
if margs.position_embedding_type == PositionEmbeddingType.absolute:
md.position_embedding_type = "absolute"
elif margs.position_embedding_type == PositionEmbeddingType.rotary:
md.position_embedding_type = "rotary"
else:
raise KeyError(f"Unknown position embedding {margs.position_embedding_type}")
# Get first pipe stage
mpu.set_pipeline_model_parallel_rank(0)
post_process = pp_size == 1
models = _get_models(tp_size, md.params_dtype, True, post_process)
models_init = models
md.consumed_train_samples = consumed_train_samples
md.consumed_valid_samples = consumed_valid_samples
queue.put(md)
def queue_put(name, msg):
print(f"sending {name}")
msg["name"] = name
queue.put(msg)
message = {
"word embeddings": torch.cat(
[
models[tp_rank].language_model.embedding.word_embeddings.weight.data
for tp_rank in range(tp_size)
],
dim=0,
)
}
if margs.position_embedding_type == PositionEmbeddingType.absolute:
message["position embeddings"] = models[
0
].language_model.embedding.position_embeddings.weight.data
queue_put("embeddings", message)
# Get last pipe stage if lm_head needs to be sent
if not margs.tie_embed_logits:
mpu.set_pipeline_model_parallel_rank(pp_size - 1)
pre_process = pp_size == 1
if pre_process:
models = models_init
else:
models = _get_models(tp_size, md.params_dtype, pre_process, True)
models_final = models
queue_put(
"lm_head",
{
"lm_head": torch.cat(
[
models[tp_rank].language_model.lm_head.data
for tp_rank in range(tp_size)
]
)
},
)
total_layer_num = 0
for pp_rank in range(pp_size):
# For later pipeline parallel ranks, make the new models
mpu.set_pipeline_model_parallel_rank(pp_rank)
post_process = pp_rank == pp_size - 1
if pp_rank == 0:
models = models_init
elif pp_rank == pp_size - 1 and not md.tie_embed_logits:
models = models_final
else:
models = _get_models(tp_size, md.params_dtype, False, post_process)
for layer_num in range(len(models[0].language_model.encoder.layers)):
message = {}
# Get non-parallel tensors from tp_rank 0
layer = models[0].language_model.encoder.layers[layer_num]
message["input layernorm weight"] = layer.input_layernorm.weight.data
if margs.parallel_layernorm:
message["mlp layernorm weight"] = layer.mlp_layernorm.weight.data
if not margs.use_rms_norm:
message["input layernorm bias"] = layer.input_layernorm.bias.data
if margs.parallel_layernorm:
message["mlp layernorm bias"] = layer.mlp_layernorm.bias.data
if not margs.parallel_attn:
message[
"post layernorm weight"
] = layer.post_attention_layernorm.weight.data
if not margs.use_rms_norm:
message[
"post layernorm bias"
] = layer.post_attention_layernorm.bias.data
if margs.use_bias:
message["dense bias"] = layer.self_attention.dense.bias.data
message["mlp l1 bias"] = layer.mlp.dense_4h_to_h.bias.data
# Grab all parallel tensors for this layer
qkv_weight = []
qkv_bias = []
dense_weight = []
mlp_l0_weight = []
mlp_l0_bias = []
mlp_l1_weight = []
for tp_rank, model in enumerate(models):
layer = model.language_model.encoder.layers[layer_num]
qkv_weight.append(layer.self_attention.query_key_value.weight.data)
if margs.use_bias:
qkv_bias.append(layer.self_attention.query_key_value.bias.data)
dense_weight.append(layer.self_attention.dense.weight.data)
mlp_l0_weight.append(layer.mlp.dense_h_to_4h.weight.data)
if margs.use_bias:
mlp_l0_bias.append(layer.mlp.dense_h_to_4h.bias.data)
mlp_l1_weight.append(layer.mlp.dense_4h_to_h.weight.data)
# concat them
message["qkv weight"] = torch.cat(qkv_weight, dim=0)
if margs.use_bias:
message["qkv bias"] = torch.cat(qkv_bias, dim=0)
message["dense weight"] = torch.cat(dense_weight, dim=1)
if margs.glu_activation is None:
message["mlp l0 weight"] = torch.cat(mlp_l0_weight, dim=0)
else:
up_weights = []
gate_weights = []
for weight in mlp_l0_weight:
up, gate = torch.chunk(weight, 2, dim=0)
up_weights.append(up)
gate_weights.append(gate)
message["mlp l0 weight"] = torch.cat(up_weights + gate_weights, dim=0)
if margs.use_bias:
message["mlp l0 bias"] = torch.cat(mlp_l0_bias, dim=0)
message["mlp l1 weight"] = torch.cat(mlp_l1_weight, dim=1)
queue_put(f"transformer layer {total_layer_num}", message)
total_layer_num = total_layer_num + 1
# Send final layernorm from tp_rank 0
message = {"weight": models[0].language_model.encoder.final_layernorm.weight.data}
if not margs.use_rms_norm:
message["bias"] = models[0].language_model.encoder.final_layernorm.bias.data
queue_put("final layernorm", message)
# Send BERT lm head and binary head if it exists
if md.model_type == "BERT":
message = {
"weight": models[0].language_model.pooler.dense.weight.data,
"bias": models[0].language_model.pooler.dense.bias.data,
}
queue_put("pooler", message)
message = {
"dense weight": models[0].lm_head.dense.weight.data,
"dense bias": models[0].lm_head.dense.bias.data,
"layernorm weight": models[0].lm_head.layernorm.weight.data,
"layernorm bias": models[0].lm_head.layernorm.bias.data,
}
queue_put("lm head", message)
if args.model_type == "BERT" and md.bert_binary_head:
print("Sending BERT Binary head")
queue.put("binary head")
message = {
"weight": models[0].binary_head.weight.data,
"bias": models[0].binary_head.bias.data,
}
queue_put("binary head", message)
queue.put("done")
def load_checkpoint(queue, args):
try:
_load_checkpoint(queue, args)
except:
queue.put("exit")
raise
|