File size: 6,165 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from megatron.core.tensor_parallel import mappings
from tests.test_utilities import Utils
import torch

def test_CopyToModelParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.ones((1)).cuda()*Utils.rank
    output_data = mappings._CopyToModelParallelRegion.backward(None, input_data)
    result = torch.ones(1).cuda()
    result = result * 22 if Utils.rank >= 4 else result * 6
    assert(torch.equal(output_data, result))
    assert(torch.equal(input_data, mappings.copy_to_tensor_model_parallel_region(input_data)))
    assert(torch.equal(input_data, mappings._CopyToModelParallelRegion.symbolic(None, input_data)))
    Utils.destroy_model_parallel()

def test_ReduceFromModelParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.ones((1)).cuda()*Utils.rank
    output_data = mappings._ReduceFromModelParallelRegion.symbolic(None, input_data)
    result = torch.ones(1).cuda()
    result = result * 22 if Utils.rank >= 4 else result * 6
    assert(torch.equal(output_data, result))
    input_data = torch.ones((1)).cuda()*Utils.rank
    assert(torch.equal(mappings.reduce_from_tensor_model_parallel_region(input_data), result))
    assert(torch.equal(input_data, mappings._ReduceFromModelParallelRegion.backward(None, input_data)))
    Utils.destroy_model_parallel()

def test_ScatterToModelParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.rand((8,4)).cuda()
    output_data = mappings.scatter_to_tensor_model_parallel_region(input_data)
    req_dim = int(Utils.rank%(Utils.world_size/2))
    assert(torch.equal(output_data, input_data[:,req_dim].reshape((8,1))))
    output_data = mappings._ScatterToModelParallelRegion.symbolic(None, input_data)
    assert(torch.equal(output_data, input_data[:, req_dim].reshape((8,1))))

    input_data = torch.ones(8).cuda() * Utils.rank
    actual_output_data = mappings._ScatterToModelParallelRegion.backward(None, input_data)
    expected_output = torch.cat((
        torch.ones(8)*0,
        torch.ones(8)*1,
        torch.ones(8)*2,
        torch.ones(8)*3)).cuda()
    if (Utils.rank >= 4):
        expected_output = expected_output + 4
    assert(torch.equal(actual_output_data, expected_output))
    Utils.destroy_model_parallel()

def test_GatherFromModelParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.rand((8,4)).cuda()
    req_dim = int(Utils.rank%(Utils.world_size/2))
    output_data = mappings._GatherFromModelParallelRegion.backward(None, input_data)
    assert(torch.equal(output_data, input_data[:, req_dim].reshape((8,1))))
    input_data = torch.ones(8).cuda() * Utils.rank
    actual_output_data = mappings.gather_from_tensor_model_parallel_region(input_data)
    expected_output = torch.cat((
        torch.ones(8)*0,
        torch.ones(8)*1,
        torch.ones(8)*2,
        torch.ones(8)*3)).cuda()
    if (Utils.rank >= 4):
        expected_output = expected_output + 4
    assert(torch.equal(actual_output_data, expected_output))
    assert(torch.equal(mappings._GatherFromModelParallelRegion.symbolic(None, input_data), expected_output))
    Utils.destroy_model_parallel()
 
def test_ScatterToSequenceParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.rand((8,4)).cuda()
    req_dim = int(Utils.rank%(Utils.world_size/2))*2
    output_data = mappings._ScatterToSequenceParallelRegion.symbolic(None, input_data)
    assert(torch.equal(output_data, input_data[req_dim:req_dim+2, :]))
    output_data = mappings.scatter_to_sequence_parallel_region(input_data)
    assert(torch.equal(output_data, input_data[req_dim:req_dim+2, :]))
    input_data = torch.ones(4).cuda() * Utils.rank
    output_data = mappings._ScatterToModelParallelRegion.backward(None, input_data)
    expected_output = torch.concat((
        torch.ones(4)*0,
        torch.ones(4)*1,
        torch.ones(4)*2,
        torch.ones(4)*3)).cuda()
    if (Utils.rank >= 4):
        expected_output = expected_output + 4
    assert(torch.equal(output_data, expected_output))
    Utils.destroy_model_parallel()

def test_GatherFromSequenceParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.ones(4).cuda() * Utils.rank
    output_data = mappings.gather_from_sequence_parallel_region(input_data)
    expected_output = torch.concat((
        torch.ones(4)*0,
        torch.ones(4)*1,
        torch.ones(4)*2,
        torch.ones(4)*3)).cuda()
    if (Utils.rank >= 4):
        expected_output = expected_output + 4
    assert(torch.equal(output_data, expected_output))
    assert(torch.equal(mappings._GatherFromSequenceParallelRegion.symbolic(None, input_data), expected_output))
    input_data = torch.vstack((
        torch.ones(4)*0,
        torch.ones(4)*1,
        torch.ones(4)*2,
        torch.ones(4)*3)).cuda()
    class Ctx:
        tensor_parallel_output_grad = True
    output_data = mappings._GatherFromSequenceParallelRegion.backward(Ctx(), input_data)
    expected_output = torch.ones((1,4)).cuda() * 4 * int(Utils.rank % 4)
    assert(torch.equal(output_data[0], expected_output))
    Utils.destroy_model_parallel()

def test_ReduceScatterToSequenceParallelRegion():
    Utils.initialize_model_parallel(4,2)
    input_data = torch.vstack((
        torch.ones(4)*0,
        torch.ones(4)*1,
        torch.ones(4)*2,
        torch.ones(4)*3)).cuda()
    output_data = mappings.reduce_scatter_to_sequence_parallel_region(input_data)
    expected_output = torch.ones(4).cuda() * 4 * int(Utils.rank % 4)
    assert(torch.equal(output_data[0], expected_output))
    assert(torch.equal(mappings._ReduceScatterToSequenceParallelRegion.symbolic(None, input_data) , expected_output.reshape((1,4))))
    input_data = torch.ones(4).cuda() * Utils.rank
    output_data = mappings._ReduceScatterToSequenceParallelRegion.backward(None,input_data)
    expected_output = torch.concat((
        torch.ones(4)*0,
        torch.ones(4)*1,
        torch.ones(4)*2,
        torch.ones(4)*3)).cuda()
    if (Utils.rank >= 4):
        expected_output = expected_output + 4
    assert(torch.equal(output_data, expected_output))
    Utils.destroy_model_parallel()