File size: 10,848 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron initialization."""

import random
import time

import numpy as np
import torch
from datetime import timedelta

import megatron
import megatron.fused_kernels
from megatron import get_adlr_autoresume
from megatron import get_tensorboard_writer
from megatron.core import mpu, tensor_parallel

import megatron.arguments

from megatron.checkpointing import load_args_from_checkpoint
from megatron.global_vars import set_global_variables
from megatron.model.transformer import bias_dropout_add_fused_train
from megatron.model.fused_bias_gelu import bias_gelu


def initialize_megatron(extra_args_provider=None,
                        args_defaults={}):
    """Set global variables, initialize distributed, and
    set autoresume and random seeds.
    `allow_no_cuda` should not be set unless using megatron for cpu only 
    data processing. In general this arg should not be set unless you know 
    what you are doing.
    """

    # Make sure cuda is available.
    assert torch.cuda.is_available(), 'Megatron requires CUDA.'

    # Parse arguments
    args = megatron.arguments.parse_args(extra_args_provider)

    if args.use_checkpoint_args or args_defaults.get('use_checkpoint_args', False):
        assert args.load is not None, '--use-checkpoints-args requires --load argument'
        load_args_from_checkpoint(args)

    megatron.arguments.validate_args(args, args_defaults)
        
    # set global args, build tokenizer, and set adlr_autoresume,
    # tensorboard-writer, and timers.
    set_global_variables(args)

    # torch.distributed initialization
    def _finish_mpu_init():
        _initialize_distributed(args)
        
        # Random seeds for reproducibility.
        if args.rank == 0:
            print('> setting random seeds to {} ...'.format(args.seed))
        _set_random_seed(args.seed, args.data_parallel_random_init)

    # Megatron's MPU is the master. Complete initialization right away.
    _finish_mpu_init()
    _init_autoresume()
    # _compile_dependencies(args)

    # No continuation function
    return None


def _compile_dependencies(args):
    # =========================
    # Compile dataset C++ code.
    # =========================
    # TODO: move this to ninja
    if torch.distributed.get_rank() == 0:
        start_time = time.time()
        print('> compiling dataset index builder ...')
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
        print('>>> done with dataset index builder. Compilation time: {:.3f} '
              'seconds'.format(time.time() - start_time), flush=True)

    # ==================
    # Load fused kernels
    # ==================

    # Custom kernel constraints check.
    seq_len = args.seq_length
    attn_batch_size = \
        (args.num_attention_heads / args.tensor_model_parallel_size) * \
        args.micro_batch_size
    # Constraints on sequence length and attn_batch_size to enable warp based
    # optimization and upper triangular optimization (for causal mask)
    custom_kernel_constraint = seq_len > 16 and seq_len <= 4096 and \
        seq_len % 4 == 0 and attn_batch_size % 4 == 0

    if not ((args.fp16 or args.bf16) and
            custom_kernel_constraint and
            args.masked_softmax_fusion):
        if args.rank == 0:
            print('WARNING: constraints for invoking optimized'
                  ' fused softmax kernel are not met. We default'
                  ' back to unfused kernel invocations.', flush=True)
    
    # Always build on rank zero first.
    if torch.distributed.get_rank() == 0:
        start_time = time.time()
        print('> compiling and loading fused kernels ...', flush=True)
        megatron.fused_kernels.load(args)
        torch.distributed.barrier()
    else:
        torch.distributed.barrier()
        megatron.fused_kernels.load(args)
    # Simple barrier to make sure all ranks have passed the
    # compilation phase successfully before moving on to the
    # rest of the program. We think this might ensure that
    # the lock is released.
    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('>>> done with compiling and loading fused kernels. '
              'Compilation time: {:.3f} seconds'.format(
                  time.time() - start_time), flush=True)


def _initialize_distributed(args):
    """Initialize torch.distributed and core model parallel."""
    device_count = torch.cuda.device_count()
    if torch.distributed.is_initialized():
        if args.rank == 0:
            print('torch distributed is already initialized, '
                  'skipping initialization ...', flush=True)
        args.rank = torch.distributed.get_rank()
        args.world_size = torch.distributed.get_world_size()
    else:
        if args.rank == 0:
            print('> initializing torch distributed ...', flush=True)
        # Manually set the device ids.
        if device_count > 0:
            device = args.rank % device_count
            if args.local_rank is not None:
                assert args.local_rank == device, \
                    'expected local-rank to be the same as rank % device-count.'
            else:
                args.local_rank = device
            torch.cuda.set_device(device)
    # Call the init process
    torch.distributed.init_process_group(
        backend=args.distributed_backend,
        world_size=args.world_size,
        rank=args.rank,
        timeout=timedelta(minutes=10)
    )

    # Set the tensor model-parallel, pipeline model-parallel, and
    # data-parallel communicators.
    if device_count > 0:
        if mpu.model_parallel_is_initialized():
            print('model parallel is already initialized')
        else:
            mpu.initialize_model_parallel(args.tensor_model_parallel_size,
                                          args.pipeline_model_parallel_size,
                                          args.virtual_pipeline_model_parallel_size,
                                          args.pipeline_model_parallel_split_rank)
            if args.rank == 0:
                print(f'> initialized tensor model parallel with size '
                      f'{mpu.get_tensor_model_parallel_world_size()}')
                print(f'> initialized pipeline model parallel with size '
                      f'{mpu.get_pipeline_model_parallel_world_size()}')


def _init_autoresume():
    """Set autoresume start time."""
    autoresume = get_adlr_autoresume()
    if autoresume:
        torch.distributed.barrier()
        autoresume.init()
        torch.distributed.barrier()


def _set_random_seed(seed_, data_parallel_random_init=False):
    """Set random seed for reproducability."""
    if seed_ is not None and seed_ > 0:
        # Ensure that different pipeline MP stages get different seeds.
        seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank())
        # Ensure different data parallel ranks get different seeds
        if data_parallel_random_init:
            seed = seed + (10 * mpu.get_data_parallel_rank())
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.device_count() > 0:
            tensor_parallel.model_parallel_cuda_manual_seed(seed)
    else:
        raise ValueError('Seed ({}) should be a positive integer.'.format(seed_))


def write_args_to_tensorboard(args):
    """Write arguments to tensorboard."""
    # NOTE: if we use wandb, then the args are logged on creation, so nothing happens in this 
    # function. 
    if not getattr(args,"wandb_logger",False):
        writer = get_tensorboard_writer()
        if writer:
            for arg in vars(args):
                writer.add_text(arg, str(getattr(args, arg)),
                                global_step=args.iteration)


def set_jit_fusion_options(args):
    """Set PyTorch JIT layer fusion options."""
    # flags required to enable jit fusion kernels
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10):
        # nvfuser
        torch._C._jit_set_profiling_executor(True)
        torch._C._jit_set_profiling_mode(True)
        torch._C._jit_override_can_fuse_on_cpu(False)
        torch._C._jit_override_can_fuse_on_gpu(False)
        torch._C._jit_set_texpr_fuser_enabled(False)
        torch._C._jit_set_nvfuser_enabled(True)
        torch._C._debug_set_autodiff_subgraph_inlining(False)
    else:
        # legacy pytorch fuser
        torch._C._jit_set_profiling_mode(False)
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_override_can_fuse_on_cpu(True)
        torch._C._jit_override_can_fuse_on_gpu(True)

    _warmup_jit_function(args)


def _warmup_jit_function(args):
    """ Compile JIT functions before the main training steps """
    if args.bf16:
        dtype = torch.bfloat16
    elif args.fp16:
        dtype = torch.float16
    else:
        dtype = torch.float32

    # Warmup fused bias+gelu
    bias = torch.rand(args.ffn_hidden_size // args.tensor_model_parallel_size,
                      dtype=dtype, device='cuda')
    input = torch.rand((args.seq_length, args.micro_batch_size,
                        args.ffn_hidden_size // args.tensor_model_parallel_size),
                       dtype=dtype, device='cuda')
    # Warmup JIT fusions with the input grad_enable state of both forward
    # prop and recomputation
    for bias_grad, input_grad in zip([True, True], [False, True]):
        bias.requires_grad, input.requires_grad = bias_grad, input_grad
        for _ in range(5):
            output = bias_gelu(bias, input)
    del bias, input, output

    # Warmup fused bias+dropout+add
    if args.sequence_parallel:
        seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
    else:
        seq_length = args.seq_length
    input = torch.rand((seq_length, args.micro_batch_size, args.hidden_size),
                       dtype=dtype, device='cuda')
    residual = torch.rand((seq_length, args.micro_batch_size, args.hidden_size),
                          dtype=dtype, device='cuda')
    bias = torch.rand((args.hidden_size), dtype=dtype, device='cuda').expand_as(residual)
    dropout_rate = 0.1
    # Warmup JIT fusions with the input grad_enable state of both forward
    # prop and recomputation
    for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
        input.requires_grad = input_grad
        bias.requires_grad = bias_grad
        residual.requires_grad = residual_grad
        for _ in range(5):
            output = bias_dropout_add_fused_train(input, bias, residual, dropout_rate)
    del bias, input, residual, output
    torch.cuda.empty_cache()