File size: 60,765 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron arguments."""
import argparse
import os
import torch
import megatron
from megatron.metrics import METRICS
from megatron.model.enums import PositionEmbeddingType
def build_base_parser():
parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
allow_abbrev=False)
# Standard arguments.
parser = _add_network_size_args(parser)
parser = _add_regularization_args(parser)
parser = _add_training_args(parser)
parser = _add_initialization_args(parser)
parser = _add_learning_rate_args(parser)
parser = _add_checkpointing_args(parser)
parser = _add_mixed_precision_args(parser)
parser = _add_distributed_args(parser)
parser = _add_validation_args(parser)
parser = _add_data_args(parser)
parser = _add_autoresume_args(parser)
parser = _add_biencoder_args(parser)
parser = _add_vision_args(parser)
parser = _add_logging_args(parser)
parser = _add_inference_args(parser)
parser = _add_transformer_engine_args(parser)
return parser
def parse_args(extra_args_provider=None):
"""Parse all arguments."""
parser = build_base_parser()
# Custom arguments.
if extra_args_provider is not None:
parser = extra_args_provider(parser)
args = parser.parse_args()
# Args from environment
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
return args
def validate_args(args, defaults={}):
# Tensor model parallel size.
args.tensor_model_parallel_size = min(
args.tensor_model_parallel_size, args.world_size)
assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
' ({}) is not divisible by tensor model parallel size ({})'.format(
args.world_size, args.tensor_model_parallel_size)
# Pipeline model parallel size.
args.pipeline_model_parallel_size = min(
args.pipeline_model_parallel_size,
(args.world_size // args.tensor_model_parallel_size))
args.transformer_pipeline_model_parallel_size = (
args.pipeline_model_parallel_size - 1
if args.standalone_embedding_stage else
args.pipeline_model_parallel_size
)
# Checks.
model_parallel_size = args.pipeline_model_parallel_size * \
args.tensor_model_parallel_size
assert args.world_size % model_parallel_size == 0, 'world size is not'\
' divisible by tensor parallel size ({}) times pipeline parallel ' \
'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
args.pipeline_model_parallel_size)
args.data_parallel_size = args.world_size // model_parallel_size
if args.rank == 0:
print('using world size: {}, data-parallel-size: {}, '
'tensor-model-parallel size: {}, '
'pipeline-model-parallel size: {} '.format(
args.world_size, args.data_parallel_size,
args.tensor_model_parallel_size,
args.pipeline_model_parallel_size), flush=True)
if args.pipeline_model_parallel_size > 1:
if args.pipeline_model_parallel_split_rank is not None:
assert args.pipeline_model_parallel_split_rank < \
args.pipeline_model_parallel_size, 'split rank needs'\
' to be less than pipeline model parallel size ({})'.format(
args.pipeline_model_parallel_size)
if args.recompute_activations:
args.recompute_granularity = 'selective'
del args.recompute_activations
if args.metrics == ["all"]:
args.metrics = list(METRICS)
# Set input defaults.
for key in defaults:
# For default to be valid, it should not be provided in the
# arguments that are passed to the program. We check this by
# ensuring the arg is set to None.
if getattr(args, key) is not None:
if args.rank == 0:
print('WARNING: overriding default arguments for {key}:{v} \
with {key}:{v2}'.format(key=key, v=defaults[key],
v2=getattr(args, key)),
flush=True)
else:
setattr(args, key, defaults[key])
# Batch size.
assert args.micro_batch_size is not None
assert args.micro_batch_size > 0
if args.global_batch_size is None:
args.global_batch_size = args.micro_batch_size * args.data_parallel_size
if args.rank == 0:
print('setting global batch size to {}'.format(
args.global_batch_size), flush=True)
assert args.global_batch_size > 0
if args.num_layers_per_virtual_pipeline_stage is not None:
assert args.pipeline_model_parallel_size > 2, \
'pipeline-model-parallel size should be greater than 2 with ' \
'interleaved schedule'
assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
'number of layers is not divisible by number of layers per virtual ' \
'pipeline stage'
args.virtual_pipeline_model_parallel_size = \
(args.num_layers // args.transformer_pipeline_model_parallel_size) // \
args.num_layers_per_virtual_pipeline_stage
else:
args.virtual_pipeline_model_parallel_size = None
# Parameters dtype.
args.params_dtype = torch.float
if args.fp16:
assert not args.bf16
args.params_dtype = torch.half
if args.bf16:
assert not args.fp16
args.params_dtype = torch.bfloat16
# bfloat16 requires gradient accumulation and all-reduce to
# be done in fp32.
if not args.accumulate_allreduce_grads_in_fp32:
args.accumulate_allreduce_grads_in_fp32 = True
if args.rank == 0:
print('accumulate and all-reduce gradients in fp32 for '
'bfloat16 data type.', flush=True)
if args.rank == 0:
print('using {} for parameters ...'.format(args.params_dtype),
flush=True)
# If we do accumulation and all-reduces in fp32, we need to have local DDP
# and we should make sure use-contiguous-buffers-in-local-ddp is not off.
if args.accumulate_allreduce_grads_in_fp32:
assert args.DDP_impl == 'local'
assert args.use_contiguous_buffers_in_local_ddp
# If we use the distributed optimizer, we need to have local DDP
# and we should make sure use-contiguous-buffers-in-local-ddp is on.
if args.use_distributed_optimizer:
assert args.DDP_impl == 'local'
assert args.use_contiguous_buffers_in_local_ddp
# For torch DDP, we do not use contiguous buffer
if args.DDP_impl == 'torch':
args.use_contiguous_buffers_in_local_ddp = False
if args.dataloader_type is None:
args.dataloader_type = 'single'
# Consumed tokens.
args.consumed_train_samples = 0
args.consumed_valid_samples = 0
# Support for variable sequence lengths across batches/microbatches.
# set it if the dataloader supports generation of variable sequence lengths
# across batches/microbatches. Due to additional communication overhead
# during pipeline parallelism, it should not be set if sequence length
# is constant during training.
if args.variable_seq_lengths is None:
args.variable_seq_lengths = False
# Iteration-based training.
if args.train_iters:
# If we use iteration-based training, make sure the
# sample-based options are off.
assert args.train_samples is None, \
'expected iteration-based training'
assert args.lr_decay_samples is None, \
'expected iteration-based learning rate decay'
assert args.lr_warmup_samples == 0, \
'expected iteration-based learning rate warmup'
assert args.rampup_batch_size is None, \
'expected no batch-size rampup for iteration-based training'
if args.lr_warmup_fraction is not None:
assert args.lr_warmup_iters == 0, \
'can only specify one of lr_warmup_fraction and lr_warmup_iters'
# Sample-based training.
if args.train_samples:
# If we use sample-based training, make sure the
# iteration-based options are off.
assert args.train_iters is None, \
'expected sample-based training'
assert args.lr_decay_iters is None, \
'expected sample-based learning rate decay'
assert args.lr_warmup_iters == 0, \
'expected sample-based learning rate warmup'
if args.lr_warmup_fraction is not None:
assert args.lr_warmup_samples == 0, \
'can only specify one of lr_warmup_fraction ' \
'and lr_warmup_samples'
if args.num_layers is not None:
assert args.encoder_num_layers is None, \
'cannot have both num_layers and encoder_num_layers specified'
args.encoder_num_layers = args.num_layers
else:
assert args.encoder_num_layers is not None, \
'either num_layers or encoder_num_layers should be specified'
args.num_layers = args.encoder_num_layers
# Check required arguments.
# required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
# 'max_position_embeddings']
required_args = ['num_layers', 'hidden_size', 'num_attention_heads']
for req_arg in required_args:
_check_arg_is_not_none(args, req_arg)
# Checks.
if args.ffn_hidden_size is None:
args.ffn_hidden_size = 4 * args.hidden_size
if args.kv_channels is None:
assert args.hidden_size % args.num_attention_heads == 0
args.kv_channels = args.hidden_size // args.num_attention_heads
if args.num_attention_heads_kv is None:
args.num_attention_heads_kv = args.num_attention_heads
if args.seq_length is not None:
assert args.encoder_seq_length is None
args.encoder_seq_length = args.seq_length
else:
assert args.encoder_seq_length is not None
args.seq_length = args.encoder_seq_length
if not isinstance(args.position_embedding_type, PositionEmbeddingType):
args.position_embedding_type = PositionEmbeddingType[args.position_embedding_type]
if args.position_embedding_type in [PositionEmbeddingType.absolute, PositionEmbeddingType.rotary]:
assert args.max_position_embeddings is not None
if args.seq_length is not None:
assert args.max_position_embeddings >= args.seq_length
if args.decoder_seq_length is not None:
assert args.max_position_embeddings >= args.decoder_seq_length
assert args.rope_scaling_factor >= 1, 'rope_scaling_factor must be >= 1'
else:
assert args.max_position_embeddings is None
if args.lr is not None:
assert args.min_lr <= args.lr
if args.save is not None:
assert args.save_interval is not None
# Mixed precision checks.
if args.fp16_lm_cross_entropy:
assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
if args.fp32_residual_connection:
assert args.fp16 or args.bf16, \
'residual connection in fp32 only supported when using fp16 or bf16.'
if args.weight_decay_incr_style == 'constant':
assert args.start_weight_decay is None
assert args.end_weight_decay is None
args.start_weight_decay = args.weight_decay
args.end_weight_decay = args.weight_decay
else:
assert args.start_weight_decay is not None
assert args.end_weight_decay is not None
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
# Persistent fused layer norm.
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
args.no_persist_layer_norm = True
if args.rank == 0:
print('Persistent fused layer norm kernel is supported from '
'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
'Defaulting to no_persist_layer_norm=True')
# Activation recomputing.
if args.distribute_saved_activations:
assert args.tensor_model_parallel_size > 1, 'can distribute ' \
'recomputed activations only across tensor model ' \
'parallel groups'
assert args.recompute_granularity == 'full', \
'distributed recompute activations is only '\
'application to full recompute granularity'
assert args.recompute_method is not None, \
'for distributed recompute activations to work you '\
'need to use a recompute method '
assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
'distributed recompute activations are supported for pytorch ' \
'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
# Tranformer-Engine/FP8 related checking
if args.fp8_e4m3 or args.fp8_hybrid:
assert args.transformer_impl == 'transformer_engine', \
'transformer-engine required for fp8 training and inference'
assert not (args.fp8_e4m3 and args.fp8_hybrid), \
'cannot train with both fp8 e4m3 and hybrid formatting'
if args.fp16:
assert args.transformer_impl == 'local', \
'transformer-engine not yet approved for fp16 training and inference'
if args.recompute_granularity == 'selective':
assert args.recompute_method is None, \
'recompute method is not yet supported for ' \
'selective recomputing granularity'
# Parallel attention.
if not args.parallel_attn:
assert not args.parallel_layernorm, "parallel_layernorm only implemented with parallel_attention"
# disable sequence parallelism when tp=1
# to avoid change in numerics when
# sequence_parallelism is enabled.
if args.tensor_model_parallel_size == 1:
args.sequence_parallel = False
# disable async_tensor_model_parallel_allreduce when
# model parallel memory optimization is enabled
if args.sequence_parallel:
args.async_tensor_model_parallel_allreduce = False
if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') and os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
if args.sequence_parallel:
raise RuntimeError(
"Using sequence parallelism requires setting the environment variable "
"CUDA_DEVICE_MAX_CONNECTIONS to 1")
if args.async_tensor_model_parallel_allreduce:
raise RuntimeError(
"Using async gradient all reduce requires setting the environment "
"variable CUDA_DEVICE_MAX_CONNECTIONS to 1")
_print_args(args)
return args
def _print_args(args):
"""Print arguments."""
if args.rank == 0:
print('------------------------ arguments ------------------------',
flush=True)
str_list = []
for arg in vars(args):
dots = '.' * (48 - len(arg))
str_list.append(' {} {} {}'.format(arg, dots, getattr(args, arg)))
for arg in sorted(str_list, key=lambda x: x.lower()):
print(arg, flush=True)
print('-------------------- end of arguments ---------------------',
flush=True)
def _check_arg_is_not_none(args, arg):
assert getattr(args, arg) is not None, '{} argument is None'.format(arg)
def _add_transformer_engine_args(parser):
group = parser.add_argument_group(title='Transformer-Engine')
group.add_argument('--fp8_e4m3', action='store_true',
help='E4M3 TransformerLayer', dest='fp8_e4m3')
group.add_argument('--fp8_hybrid', action='store_true',
help='Hybrid FP8 TransformerLayer')
group.add_argument('--no_fp8_wgrad', action='store_false',
help='Execute wgrad in higher precision even for FP8 runs', dest='fp8_wgrad')
group.add_argument('--fp8_margin', type=int, default=0,
help='Scaling margin for fp8', dest='fp8_margin')
group.add_argument('--fp8_interval', type=int, default=1,
help='Scaling update interval for fp8', dest='fp8_interval')
group.add_argument('--transformer_impl', default='local',
choices=['local', 'transformer_engine'],
help='Which Transformer implementation to use.')
group.add_argument('--fp8_amax_history_len', type=int, default=1,
help='Number of steps for which amax history is recorded per tensor')
group.add_argument('--fp8_amax_compute_algo', default='most_recent',
choices=['most_recent', 'max'],
help='Algorithm for computing amax from history')
return parser
def _add_inference_args(parser):
group = parser.add_argument_group(title='inference')
group.add_argument('--inference_batch_times_seqlen_threshold',
type=int, default=512,
help='During inference, if batch-size times '
'sequence-length is smaller than this threshold '
'then we will not use pipelining, otherwise we will.')
group.add_argument('--max_tokens_to_oom',
type=int, default=12000,
help='Maximum number of tokens during inference'
'tokens here is # in prompt + # to generate'
'Allows us to throw an error before OOM crashes server')
return parser
def _add_network_size_args(parser):
group = parser.add_argument_group(title='network size')
group.add_argument('--num_layers', type=int, default=None,
help='Number of transformer layers.')
group.add_argument('--encoder_num_layers', type=int, default=None,
help='Number of encoder transformer layers.')
group.add_argument('--decoder_num_layers', type=int, default=None,
help='Number of decoder transformer layers.')
group.add_argument('--hidden_size', type=int, default=None,
help='Tansformer hidden size.')
group.add_argument('--ffn_hidden_size', type=int, default=None,
help='Transformer Feed-Forward Network hidden size. '
'This is set to 4*hidden_size if not provided')
group.add_argument('--num_attention_heads', type=int, default=None,
help='Number of transformer attention heads.')
group.add_argument('--num_attention_heads_kv', type=int, default=None,
help='Number of transformer attention heads for the keys and values.')
group.add_argument('--kv_channels', type=int, default=None,
help='Projection weights dimension in multi-head '
'attention. This is set to '
' args.hidden_size // args.num_attention_heads '
'if not provided.')
group.add_argument('--max_position_embeddings', type=int, default=None,
help='Maximum number of position embeddings to use. '
'This is the size of position embedding.')
group.add_argument('--make_vocab_size_divisible_by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
group.add_argument('--layernorm_epsilon', type=float, default=1e-5,
help='Layer norm epsilon.')
group.add_argument('--apply_residual_connection_post_layernorm',
action='store_true',
help='If set, use original BERT residual connection '
'ordering.')
group.add_argument('--use_bias', action='store_true',
help='If set then use bias.') # Added during hackathon
# Extracted from: https://github.com/facebookresearch/llama/blob/main/llama/model.py
group.add_argument('--use_rms_norm',
action='store_true',
help='If set, use RMSNorm instead of LayerNorm.')
group.add_argument('--use_post_ln',
action='store_true',
help='If set, use Post-LN transformer (in the notation of https://sh-tsang.medium.com/review-pre-ln-transformer-on-layer-normalization-in-the-transformer-architecture-b6c91a89e9ab).')
group.add_argument('--onnx_safe', type=bool, required=False,
help='Use workarounds for known problems with '
'Torch ONNX exporter')
# Extracted from: https://github.com/bigscience-workshop/Megatron-DeepSpeed
group.add_argument('--glu_activation', type=str,
choices=megatron.model.glu_activations.GLU_ACTIVATIONS.keys(),
help='GLU activations to use.'
)
group.add_argument('--position_embedding_type', type=lambda x: PositionEmbeddingType[x],
choices=list(PositionEmbeddingType),
default=PositionEmbeddingType.absolute,
help='Define position embedding type ("absolute" | "rotary"). "absolute" by default.')
group.add_argument('--rope_scaling_factor', type=float, default=1.0,
help='Set the linear RoPE scaling factor for sequence interpolation.')
group.add_argument('--rope_theta', type=float, default=10000.0,
help='Set RoPE theta base (llama/llama2: 1e4, codellama: 1e6).')
# Added mainly for Falcon
group.add_argument("--parallel_attn", action="store_true",
help="Whether to use parallel mlp and attn computation with a single layernorm")
group.add_argument("--parallel_layernorm", action="store_true",
help="Whether to use a dedicated layernorm for the mlp in the attention")
# Added mainly for Llama
group.add_argument("--no_tie_embed_logits", action="store_false", dest="tie_embed_logits",
help=("If set, the weights of the word embedding and lm_head "
"are not tied"))
group.add_argument("--sliding_window_size", type=int, default=None,
help="Whether to use sliding window attention for Mistral. Default is None, which means no sliding window attention.")
return parser
def _add_logging_args(parser):
group = parser.add_argument_group(title='logging')
group.add_argument('--log_params_norm', action='store_true',
help='If set, calculate and log parameters norm.')
group.add_argument('--log_num_zeros_in_grad', action='store_true',
help='If set, calculate and log the number of zeros in gradient.')
group.add_argument('--timing_log_level', type=int,
default=0, choices=range(0, 3),
help='Granularity level to measure and report timing. '
' 0: report only iteration time and make sure timing '
' does not introduce extra overhead.'
' 1: report timing for operations that are executed '
' very limited times (basically once) during '
' each iteration (such as gradient all-reduce) '
' 2: report timing for operations that migh be '
' executed numerous times during each iteration. '
'Note that setting the level to 1 or 2 might '
'cause increase in iteration time.')
group.add_argument('--barrier_with_L1_time', action='store_false',
help='If not set, use barrier with level 1 time '
'measurements. Note that this is up to the user '
'to make sure calling barrier with their timers '
'will not result in hangs. This can happen if for '
'example the user adds a level 1 timer that is not '
'called by all ranks.')
group.add_argument('--timing_log_option', type=str, default='minmax',
choices=['max', 'minmax', 'all'],
help='Options for logging timing:'
' max: report the max timing across all ranks'
' minmax: report min and max timings across all ranks'
' all: report timings of all ranks.')
group.add_argument('--tensorboard_log_interval', type=int, default=1,
help='Report to tensorboard interval.')
group.add_argument('--tensorboard_queue_size', type=int, default=1000,
help='Size of the tensorboard queue for pending events '
'and summaries before one of the ‘add’ calls forces a '
'flush to disk.')
group.add_argument('--log_timers_to_tensorboard', action='store_true',
help='If set, write timers to tensorboard.')
group.add_argument('--log_batch_size_to_tensorboard', action='store_true',
help='If set, write batch-size to tensorboard.')
group.add_argument('--log_validation_ppl_to_tensorboard',
action='store_true',
help='If set, write validation perplexity to '
'tensorboard.')
group.add_argument('--log_memory_to_tensorboard',
action='store_true',
help='Enable memory logging to tensorboard.')
group.add_argument('--log_world_size_to_tensorboard',
action='store_true',
help='Enable world size logging to tensorboard.')
group.add_argument('--wandb_logger',
action='store_true',
help='Enable logging to Weights & Biases instead of tensorboard.')
group.add_argument('--wandb_project', type=str, default=None,
help='Project name for Weights & Biases.')
group.add_argument('--wandb_entity', type=str, default="meditron",
help='Entity/team name for Weights & Biases.')
group.add_argument('--wandb_id',type=str,default=None,
help="Unique ID to identify this run, alternatively can set `WANDB_RUN_ID`.")
group.add_argument('--wandb_resume',action="store_true",
help="If set, we resume logging for the id given instead of launching a new run (errors if id given and resume=False).")
group.add_argument("--wandb_api_key",type=str,default=None,
help="API key for Weights & Biases, needs to be set if not set in environment variable `WANDB_API_KEY`.")
group.add_argument("--metrics", default=[], nargs="+", choices=list(METRICS) + ["all"],
help="Metrics to report when logging")
return parser
def _add_regularization_args(parser):
group = parser.add_argument_group(title='regularization')
group.add_argument('--attention_dropout', type=float, default=0.1,
help='Post attention dropout probability.')
group.add_argument('--hidden_dropout', type=float, default=0.1,
help='Dropout probability for hidden state transformer.')
# see "LIMA: Less Is More for Alignment", Zhou et al 2023, https://arxiv.org/abs/2305.11206
group.add_argument('--lima_dropout', action='store_true',
help='Linearly raise the hidden_dropout probability from 0.0 at the first layer to the full hidden_dropout value at the last layer.')
group.add_argument('--weight_decay', type=float, default=0.01,
help='Weight decay coefficient for L2 regularization.')
group.add_argument('--start_weight_decay', type=float,
help='Initial weight decay coefficient for L2 regularization.')
group.add_argument('--end_weight_decay', type=float,
help='End of run weight decay coefficient for L2 regularization.')
group.add_argument('--weight_decay_incr_style', type=str, default='constant',
choices=['constant', 'linear', 'cosine'],
help='Weight decay increment function.')
group.add_argument('--clip_grad', type=float, default=1.0,
help='Gradient clipping based on global L2 norm.')
group.add_argument('--adam_beta1', type=float, default=0.9,
help='First coefficient for computing running averages '
'of gradient and its square')
group.add_argument('--adam_beta2', type=float, default=0.999,
help='Second coefficient for computing running averages '
'of gradient and its square')
group.add_argument('--adam_eps', type=float, default=1e-08,
help='Term added to the denominator to improve'
'numerical stability')
group.add_argument('--sgd_momentum', type=float, default=0.9,
help='Momentum factor for sgd')
return parser
def _add_training_args(parser):
group = parser.add_argument_group(title='training')
group.add_argument('--micro_batch_size', type=int, default=None,
help='Batch size per model instance (local batch size). '
'Global batch size is local batch size times data '
'parallel size times number of micro batches.')
group.add_argument('--global_batch_size', type=int, default=None,
help='Training batch size. If set, it should be a '
'multiple of micro_batch_size times data-parallel-size. '
'If this value is None, then '
'use micro_batch_size * data-parallel-size as the '
'global batch size. This choice will result in 1 for '
'number of micro-batches.')
group.add_argument('--rampup_batch_size', nargs='*', default=None,
help='Batch size ramp up with the following values:'
' --rampup_batch_size <start batch size> '
' <batch size incerement> '
' <ramp-up samples> '
'For example:'
' --rampup_batch_size 16 8 300000 \ '
' --global_batch_size 1024'
'will start with global batch size 16 and over '
' (1024 - 16) / 8 = 126 intervals will increase'
'the batch size linearly to 1024. In each interval'
'we will use approximately 300000 / 126 = 2380 samples.')
group.add_argument('--recompute_activations', action='store_true',
help='recompute activation to allow for training '
'with larger models, sequences, and batch sizes.')
group.add_argument('--recompute_granularity', type=str, default=None,
choices=['full', 'selective'],
help='Checkpoint activations to allow for training '
'with larger models, sequences, and batch sizes. '
'It is supported at two granularities 1) full: '
'whole transformer layer is recomputed, '
'2) selective: core attention part of the transformer '
'layer is recomputed.')
group.add_argument('--distribute_saved_activations',
action='store_true',
help='If set, distribute recomputed activations '
'across model parallel group.')
group.add_argument('--recompute_method', type=str, default=None,
choices=['uniform', 'block'],
help='1) uniform: uniformly divide the total number of '
'Transformer layers and recompute the input activation of '
'each divided chunk at specified granularity, '
'2) recompute the input activations of only a set number of '
'individual Transformer layers per pipeline stage and do the '
'rest without any recomputing at specified granularity'
'default) do not apply activations recompute to any layers')
group.add_argument('--recompute_num_layers', type=int, default=1,
help='1) uniform: the number of Transformer layers in each '
'uniformly divided recompute unit, '
'2) block: the number of individual Transformer layers '
'to recompute within each pipeline stage.')
group.add_argument('--train_iters', type=int, default=None,
help='Total number of iterations to train over all '
'training runs. Note that either train_iters or '
'train_samples should be provided.')
group.add_argument('--skip_iters', type=int, nargs='*', default=[],
help=('One or more iterations to ignore. Neither the forward '
'nor backward pass will be computed for this iterations'))
group.add_argument('--train_samples', type=int, default=None,
help='Total number of samples to train over all '
'training runs. Note that either train_iters or '
'train_samples should be provided.')
group.add_argument('--log_interval', type=int, default=100,
help='Report loss and timing interval.')
group.add_argument('--exit_interval', type=int, default=None,
help='Exit the program after the iteration is divisible '
'by this value.')
group.add_argument('--exit_duration_in_mins', type=int, default=None,
help='Exit the program after this many minutes.')
group.add_argument('--exit_signal_handler', action='store_true',
help='Dynamically save the checkpoint and shutdown the '
'training if SIGTERM is received')
group.add_argument('--tensorboard_dir', type=str, default=None,
help='Write TensorBoard logs to this directory.')
group.add_argument('--no_masked_softmax_fusion',
action='store_false',
help='Disable fusion of query_key_value scaling, '
'masking, and softmax.',
dest='masked_softmax_fusion')
group.add_argument('--no_bias_gelu_fusion', action='store_false',
help='Disable bias and gelu fusion.',
dest='bias_gelu_fusion')
group.add_argument('--no_bias_dropout_fusion', action='store_false',
help='Disable bias and dropout fusion.',
dest='bias_dropout_fusion')
group.add_argument('--use_flash_attn', action='store_true',
help='use FlashAttention implementation of attention. '
'https://arxiv.org/abs/2205.14135')
group.add_argument('--optimizer', type=str, default='adam',
choices=['adam', 'sgd'],
help='Optimizer function')
group.add_argument('--dataloader_type', type=str, default=None,
choices=['single', 'cyclic'],
help='Single pass vs multiple pass data loader')
group.add_argument('--no_async_tensor_model_parallel_allreduce',
action='store_false',
help='Disable asynchronous execution of '
'tensor-model-parallel all-reduce with weight '
'gradient compuation of a column-linear layer.',
dest='async_tensor_model_parallel_allreduce')
group.add_argument('--no_persist_layer_norm', action='store_true',
help='Disable using persistent fused layer norm kernel. '
'This kernel supports only a set of hidden sizes. Please '
'check persist_ln_hidden_sizes if your hidden '
'size is supported.')
group.add_argument('--sequence_parallel', action='store_true',
help='Enable sequence parallel optimization.')
group.add_argument('--no_gradient_accumulation_fusion',
action='store_false',
help='Disable fusing gradient accumulation to weight '
'gradient computation of linear layers',
dest='gradient_accumulation_fusion')
group.add_argument('--freeze_layers', action='store_true',
help='Freeze layers besides embedding ones.')
return parser
def _add_initialization_args(parser):
group = parser.add_argument_group(title='initialization')
group.add_argument('--seed', type=int, default=1234,
help='Random seed used for python, numpy, '
'pytorch, and cuda.')
group.add_argument('--data_parallel_random_init', action='store_true',
help='Enable random initialization of params '
'across data parallel ranks')
group.add_argument('--init_method_std', type=float, default=0.02,
help='Standard deviation of the zero mean normal '
'distribution used for weight initialization.')
group.add_argument('--init_method_xavier_uniform', action='store_true',
help='Enable Xavier uniform parameter initialization')
return parser
def _add_learning_rate_args(parser):
group = parser.add_argument_group(title='learning rate')
group.add_argument('--lr', type=float, default=None,
help='Initial learning rate. Depending on decay style '
'and initial warmup, the learing rate at each '
'iteration would be different.')
group.add_argument('--lr_decay_style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'inverse-square-root'],
help='Learning rate decay function.')
group.add_argument('--lr_decay_iters', type=int, default=None,
help='number of iterations to decay learning rate over,'
' If None defaults to `--train_iters`')
group.add_argument('--lr_decay_samples', type=int, default=None,
help='number of samples to decay learning rate over,'
' If None defaults to `--train_samples`')
group.add_argument('--lr_warmup_fraction', type=float, default=None,
help='fraction of lr-warmup-(iters/samples) to use '
'for warmup (as a float)')
group.add_argument('--lr_warmup_iters', type=int, default=0,
help='number of iterations to linearly warmup '
'learning rate over.')
group.add_argument('--lr_warmup_samples', type=int, default=0,
help='number of samples to linearly warmup '
'learning rate over.')
group.add_argument('--min_lr', type=float, default=0.0,
help='Minumum value for learning rate. The scheduler'
'clip values below this threshold.')
group.add_argument('--override_opt_param_scheduler', action='store_true',
help='Reset the values of the scheduler (learning rate,'
'warmup iterations, minimum learning rate, maximum '
'number of iterations, and decay style from input '
'arguments and ignore values from checkpoints. Note'
'that all the above values will be reset.')
group.add_argument('--use_checkpoint_opt_param_scheduler', action='store_true',
help='Use checkpoint to set the values of the scheduler '
'(learning rate, warmup iterations, minimum learning '
'rate, maximum number of iterations, and decay style '
'from checkpoint and ignore input arguments.')
group.add_argument('--annealing', action='store_true',)
return parser
def _add_checkpointing_args(parser):
group = parser.add_argument_group(title='checkpointing')
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--save_interval', type=int, default=None,
help='Number of iterations between checkpoint saves.')
group.add_argument('--no_save_optim', action='store_true', default=None,
help='Do not save current optimizer.')
group.add_argument('--no_save_rng', action='store_true', default=None,
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Directory containing a model checkpoint.')
group.add_argument('--no_load_optim', action='store_true', default=None,
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no_load_rng', action='store_true', default=None,
help='Do not load rng state when loading checkpoint.')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
group.add_argument('--no_initialization', action='store_false',
help='Do not perform initialization when building model, '
'can reduce startup time when definitely loading from a '
'checkpoint',
dest='perform_initialization')
group.add_argument('--use_checkpoint_args', action='store_true',
help='Override any command line arguments with arguments '
'from the checkpoint')
return parser
def _add_mixed_precision_args(parser):
group = parser.add_argument_group(title='mixed precision')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode.')
group.add_argument('--bf16', action='store_true',
help='Run model in bfloat16 mode.')
group.add_argument('--loss_scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--initial_loss_scale', type=float, default=2**32,
help='Initial loss scale for dynamic loss scaling.')
group.add_argument('--min_loss_scale', type=float, default=1.0,
help='Minimum loss scale for dynamic loss scale.')
group.add_argument('--loss_scale_window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale.')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--fp32_residual_connection', action='store_true',
help='Move residual connections to fp32.')
group.add_argument('--no_query_key_layer_scaling', action='store_false',
help='Do not scale Q * K^T by 1 / layer-number.',
dest='apply_query_key_layer_scaling')
group.add_argument('--attention_softmax_in_fp32', action='store_true',
help='Run attention masking and softmax in fp32. '
'This flag is ignored unless '
'--no_query_key_layer_scaling is specified.')
group.add_argument('--accumulate_allreduce_grads_in_fp32',
action='store_true',
help='Gradient accumulation and all-reduce in fp32.')
group.add_argument('--fp16_lm_cross_entropy',
action='store_true',
help='Move the cross entropy unreduced loss calculation'
'for lm head to fp16.')
return parser
def _add_distributed_args(parser):
group = parser.add_argument_group(title='distributed')
group.add_argument('--tensor_model_parallel_size', type=int, default=1,
help='Degree of tensor model parallelism.')
group.add_argument('--pipeline_model_parallel_size', type=int, default=1,
help='Degree of pipeline model parallelism.')
group.add_argument('--pipeline_model_parallel_split_rank',
type=int, default=None,
help='Rank where encoder and decoder should be split.')
group.add_argument('--num_layers_per_virtual_pipeline_stage', type=int, default=None,
help='Number of layers per virtual pipeline stage')
group.add_argument('--distributed_backend', default='nccl',
choices=['nccl', 'gloo'],
help='Which backend to use for distributed training.')
group.add_argument('--DDP_impl', default='local',
choices=['local', 'torch'],
help='which DistributedDataParallel implementation '
'to use.')
group.add_argument('--no_contiguous_buffers_in_local_ddp',
action='store_false', help='If set, dont use '
'contiguous buffer in local DDP.',
dest='use_contiguous_buffers_in_local_ddp')
group.add_argument('--no_scatter_gather_tensors_in_pipeline',
action='store_false',
help='Use scatter/gather to optimize communication of tensors in pipeline',
dest='scatter_gather_tensors_in_pipeline')
group.add_argument('--use_ring_exchange_p2p', action='store_true',
default=False, help='If set, use custom-built ring exchange '
'for p2p communications. Note that this option will require '
'a custom built image that support ring-exchange p2p.')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher.')
group.add_argument('--use_cpu_initialization', action='store_true',
default=None, help='If set, affine parallel weights '
'initialization uses CPU')
group.add_argument('--empty_unused_memory_level', default=0, type=int,
choices=[0, 1, 2],
help='Call torch.cuda.empty_cache() each iteration '
'(training and eval), to reduce fragmentation.'
'0=off, 1=moderate, 2=aggressive.')
group.add_argument('--standalone_embedding_stage', action='store_true',
default=False, help='If set, *input* embedding layer '
'is placed on its own pipeline stage, without any '
'transformer layers. (For T5, this flag currently only '
'affects the encoder embedding.)')
group.add_argument('--use_distributed_optimizer', action='store_true',
help='Use distributed optimizer.')
return parser
def _add_validation_args(parser):
group = parser.add_argument_group(title='validation')
group.add_argument('--eval_iters', type=int, default=100,
help='Number of iterations to run for evaluation'
'validation/test for.')
group.add_argument('--eval_interval', type=int, default=1000,
help='Interval between running evaluation on '
'validation set.')
return parser
def _add_data_args(parser):
group = parser.add_argument_group(title='data and dataloader')
group.add_argument('--data_path', nargs='*', default=None,
help='Path to the training dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ... It is used with --split when a '
'single dataset used for all three: train, valid '
'and test. It is exclusive to the other '
'--*-data_path args')
group.add_argument('--split', type=str, default='969, 30, 1',
help='Comma-separated list of proportions for training,'
' validation, and test split. For example the split '
'`90,5,5` will use 90%% of data for training, 5%% for '
'validation and 5%% for test.')
group.add_argument('--train_data_path', nargs='*', default=None,
help='Path to the training dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--valid_data_path', nargs='*', default=None,
help='Path to the validation dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--test_data_path', nargs='*', default=None,
help='Path to the test dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--vocab_file', type=str, default=None,
help='Path to the vocab file.')
group.add_argument('--merge_file', type=str, default=None,
help='Path to the BPE merge file.')
group.add_argument('--vocab_extra_ids', type=int, default=0,
help='Number of additional vocabulary tokens. '
'They are used for span masking in the T5 model')
group.add_argument('--vocab_extra_ids_list', type=str, default=None,
help='comma separated list of special vocab ids to add to the tokenizer')
group.add_argument('--seq_length', type=int, default=None,
help='Maximum sequence length to process.')
group.add_argument('--variable_seq_lengths', action='store_true', default=None,
help='Enable variable sequence lengths.')
group.add_argument('--scalar_loss_mask', type=float, default=0.0,
help=('Instruction-tuning argument: Scalar to multiply the '
'loss of the "masked out" tokens (usually the user '
'tokens, not assistant ones). Set to zero (default) '
'to completely remove the loss of said tokens'))
group.add_argument('--encoder_seq_length', type=int, default=None,
help='Maximum encoder sequence length to process.'
'This should be exclusive of --seq_length')
group.add_argument('--decoder_seq_length', type=int, default=None,
help="Maximum decoder sequence length to process.")
group.add_argument('--retriever_seq_length', type=int, default=256,
help='Maximum sequence length for the biencoder model '
'for retriever')
group.add_argument('--sample_rate', type=float, default=1.0,
help='sample rate for training data. Supposed to be 0 '
' < sample_rate < 1')
group.add_argument('--mask_prob', type=float, default=0.15,
help='Probability of replacing a token with mask.')
group.add_argument('--short_seq_prob', type=float, default=0.1,
help='Probability of producing a short sequence.')
group.add_argument('--mmap_warmup', action='store_true',
help='Warm up mmap files.')
group.add_argument('--num_workers', type=int, default=2,
help="Dataloader number of workers.")
group.add_argument('--tokenizer_type', type=str,
default=None,
choices=['BertWordPieceLowerCase',
'BertWordPieceCase',
'GPT2BPETokenizer',
'SentencePieceTokenizer',
'PretrainedFromHF',
'FalconTokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--tokenizer_model', type=str, default=None,
help='Sentencepiece tokenizer model.')
group.add_argument("--no_new_tokens", action="store_false", dest="new_tokens",
help=("Do not add special tokens (e.g. CLS, MASK, etc) "
"in the sentenciepiece tokenizer"))
group.add_argument('--data_impl', type=str, default='infer',
choices=['lazy', 'cached', 'mmap', 'infer'],
help='Implementation of indexed datasets.')
group.add_argument('--reset_position_ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
group.add_argument('--reset_attention_mask', action='store_true',
help='Reset self attention maske after '
'end-of-document token.')
group.add_argument('--eod_mask_loss', action='store_true',
help='Mask loss for the end of document tokens.')
return parser
def _add_autoresume_args(parser):
group = parser.add_argument_group(title='autoresume')
group.add_argument('--adlr_autoresume', action='store_true',
help='Enable autoresume on adlr cluster.')
group.add_argument('--adlr_autoresume_interval', type=int, default=1000,
help='Intervals over which check for autoresume'
'termination signal')
return parser
def _add_biencoder_args(parser):
group = parser.add_argument_group(title='biencoder')
# network size
group.add_argument('--ict_head_size', type=int, default=None,
help='Size of block embeddings to be used in ICT and '
'REALM (paper default: 128)')
group.add_argument('--biencoder_projection_dim', type=int, default=0,
help='Size of projection head used in biencoder')
group.add_argument('--biencoder_shared_query_context_model', action='store_true',
help='Whether to share the parameters of the query '
'and context models or not')
# checkpointing
group.add_argument('--ict_load', type=str, default=None,
help='Directory containing an ICTBertModel checkpoint')
group.add_argument('--bert_load', type=str, default=None,
help='Directory containing an BertModel checkpoint '
'(needed to start ICT and REALM)')
# data
group.add_argument('--titles_data_path', type=str, default=None,
help='Path to titles dataset used for ICT')
group.add_argument('--query_in_block_prob', type=float, default=0.1,
help='Probability of keeping query in block for '
'ICT dataset')
group.add_argument('--use_one_sent_docs', action='store_true',
help='Whether to use one sentence documents in ICT')
group.add_argument('--evidence_data_path', type=str, default=None,
help='Path to Wikipedia Evidence frm DPR paper')
# training
group.add_argument('--retriever_report_topk_accuracies', nargs='+', type=int,
default=[], help="Which top-k accuracies to report "
"(e.g. '1 5 20')")
group.add_argument('--retriever_score_scaling', action='store_true',
help='Whether to scale retriever scores by inverse '
'square root of hidden size')
# faiss index
group.add_argument('--block_data_path', type=str, default=None,
help='Where to save/load BlockData to/from')
group.add_argument('--embedding_path', type=str, default=None,
help='Where to save/load Open-Retrieval Embedding'
' data to/from')
# indexer
group.add_argument('--indexer_batch_size', type=int, default=128,
help='How large of batches to use when doing indexing '
'jobs')
group.add_argument('--indexer_log_interval', type=int, default=1000,
help='After how many batches should the indexer '
'report progress')
return parser
def _add_vision_args(parser):
group = parser.add_argument_group(title="vision")
# general vision arguements
group.add_argument('--num_classes', type=int, default=1000,
help='num of classes in vision classificaiton task')
group.add_argument('--img_h', type=int, default=224,
help='Image height for vision classification task')
group.add_argument('--img_w', type=int, default=224,
help='Image height for vision classification task')
group.add_argument('--num_channels', type=int, default=3,
help='Number of channels in input image data')
group.add_argument('--patch_dim', type=int, default=16,
help='patch dimension')
group.add_argument('--classes_fraction', type=float, default=1.0,
help='training with fraction of classes.')
group.add_argument('--data_per_class_fraction', type=float, default=1.0,
help='training with fraction of data per class.')
group.add_argument('--no_data_sharding', action='store_false',
help='Disable data sharding.',
dest='data_sharding')
group.add_argument('--head_lr_mult', type=float, default=1.0,
help='learning rate multiplier for head during finetuning')
# dino arguments
group.add_argument('--iter_per_epoch', type=int, default=1250,
help='iterations per epoch')
group.add_argument('--dino_local_img_size', type=int, default=96,
help='Image size for vision classification task')
group.add_argument('--dino_local_crops_number', type=int, default=10,
help='Number of local crops')
group.add_argument('--dino_head_hidden_size', type=int, default=2048,
help='Hidden dimension size in dino head')
group.add_argument('--dino_bottleneck_size', type=int, default=256,
help='Bottle neck dimension in dino head ')
group.add_argument('--dino_freeze_last_layer', type=float, default=1,
help='Freezing last layer weights')
group.add_argument('--dino_norm_last_layer', action='store_true',
help='Disable Norm in last layer.')
group.add_argument('--dino_warmup_teacher_temp', type=float, default=0.04,
help='warump teacher temperature')
group.add_argument('--dino_teacher_temp', type=float, default=0.07,
help='teacher temperature')
group.add_argument('--dino_warmup_teacher_temp_epochs', type=int, default=30,
help='warmup teacher temperaure epochs')
return parser
|