File size: 60,765 Bytes
a93e458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron arguments."""

import argparse
import os

import torch

import megatron
from megatron.metrics import METRICS
from megatron.model.enums import PositionEmbeddingType


def build_base_parser():
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
    parser = _add_biencoder_args(parser)
    parser = _add_vision_args(parser)
    parser = _add_logging_args(parser)
    parser = _add_inference_args(parser)
    parser = _add_transformer_engine_args(parser)
    return parser


def parse_args(extra_args_provider=None):
    """Parse all arguments."""
    parser = build_base_parser()
    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)

    args = parser.parse_args()

    # Args from environment
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
    return args


def validate_args(args, defaults={}):
    # Tensor model parallel size.
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
        if args.standalone_embedding_stage else
        args.pipeline_model_parallel_size
    )
    # Checks.
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
    args.data_parallel_size = args.world_size // model_parallel_size
    if args.rank == 0:
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)

    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations
    if args.metrics == ["all"]:
        args.metrics = list(METRICS)


    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
    if args.num_layers_per_virtual_pipeline_stage is not None:
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None

    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        assert not args.bf16
        args.params_dtype = torch.half
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)

    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp

    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp

    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

    if args.dataloader_type is None:
        args.dataloader_type = 'single'

    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0

    # Support for variable sequence lengths across batches/microbatches.
    # set it if the dataloader supports generation of variable sequence lengths
    # across batches/microbatches. Due to additional communication overhead
    # during pipeline parallelism, it should not be set if sequence length
    # is constant during training.
    if args.variable_seq_lengths is None:
        args.variable_seq_lengths = False

    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
            'expected iteration-based learning rate warmup'
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
        if args.lr_warmup_fraction is not None:
            assert args.lr_warmup_iters == 0, \
                'can only specify one of lr_warmup_fraction and lr_warmup_iters'

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learning rate warmup'
        if args.lr_warmup_fraction is not None:
            assert args.lr_warmup_samples == 0, \
                'can only specify one of lr_warmup_fraction ' \
                'and lr_warmup_samples'

    if args.num_layers is not None:
        assert args.encoder_num_layers is None, \
            'cannot have both num_layers and encoder_num_layers specified'
        args.encoder_num_layers = args.num_layers
    else:
        assert args.encoder_num_layers is not None, \
            'either num_layers or encoder_num_layers should be specified'
        args.num_layers = args.encoder_num_layers

    # Check required arguments.
    # required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
    #                  'max_position_embeddings']
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads']
    for req_arg in required_args:
        _check_arg_is_not_none(args, req_arg)

    # Checks.
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.num_attention_heads_kv is None:
        args.num_attention_heads_kv = args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length

    if not isinstance(args.position_embedding_type, PositionEmbeddingType):
        args.position_embedding_type = PositionEmbeddingType[args.position_embedding_type]
    if args.position_embedding_type in [PositionEmbeddingType.absolute, PositionEmbeddingType.rotary]:
        assert args.max_position_embeddings is not None
        if args.seq_length is not None:
            assert args.max_position_embeddings >= args.seq_length
        if args.decoder_seq_length is not None:
            assert args.max_position_embeddings >= args.decoder_seq_length
        assert args.rope_scaling_factor >= 1, 'rope_scaling_factor must be >= 1'
    else:
        assert args.max_position_embeddings is None

    if args.lr is not None:
        assert args.min_lr <= args.lr
    if args.save is not None:
        assert args.save_interval is not None
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
    if args.fp32_residual_connection:
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'

    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
    else:
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None

    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

    # Activation recomputing.
    if args.distribute_saved_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'recomputed activations only across tensor model ' \
            'parallel groups'
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
            'distributed recompute activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

    # Tranformer-Engine/FP8 related checking
    if args.fp8_e4m3 or args.fp8_hybrid:
        assert args.transformer_impl == 'transformer_engine', \
            'transformer-engine required for fp8 training and inference'

    assert not (args.fp8_e4m3 and args.fp8_hybrid), \
        'cannot train with both fp8 e4m3 and hybrid formatting'

    if args.fp16:
        assert args.transformer_impl == 'local', \
            'transformer-engine not yet approved for fp16 training and inference'

    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'

    # Parallel attention.
    if not args.parallel_attn:
        assert not args.parallel_layernorm, "parallel_layernorm only implemented with parallel_attention"

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

    # disable async_tensor_model_parallel_allreduce when
    # model parallel memory optimization is enabled
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False

    if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') and os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
        if args.sequence_parallel:
            raise RuntimeError(
                "Using sequence parallelism requires setting the environment variable "
                "CUDA_DEVICE_MAX_CONNECTIONS to 1")
        if args.async_tensor_model_parallel_allreduce:
            raise RuntimeError(
                "Using async gradient all reduce requires setting the environment "
                "variable CUDA_DEVICE_MAX_CONNECTIONS to 1")
    _print_args(args)
    return args


def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
        print('------------------------ arguments ------------------------',
              flush=True)
        str_list = []
        for arg in vars(args):
            dots = '.' * (48 - len(arg))
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
        print('-------------------- end of arguments ---------------------',
              flush=True)


def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


def _add_transformer_engine_args(parser):
    group = parser.add_argument_group(title='Transformer-Engine')
    group.add_argument('--fp8_e4m3', action='store_true',
                        help='E4M3 TransformerLayer', dest='fp8_e4m3')
    group.add_argument('--fp8_hybrid', action='store_true',
                        help='Hybrid FP8 TransformerLayer')
    group.add_argument('--no_fp8_wgrad', action='store_false',
                        help='Execute wgrad in higher precision even for FP8 runs', dest='fp8_wgrad')
    group.add_argument('--fp8_margin', type=int, default=0,
                        help='Scaling margin for fp8', dest='fp8_margin')
    group.add_argument('--fp8_interval', type=int, default=1,
                        help='Scaling update interval for fp8', dest='fp8_interval')
    group.add_argument('--transformer_impl', default='local',
                       choices=['local', 'transformer_engine'],
                       help='Which Transformer implementation to use.')
    group.add_argument('--fp8_amax_history_len', type=int, default=1,
                        help='Number of steps for which amax history is recorded per tensor')
    group.add_argument('--fp8_amax_compute_algo', default='most_recent',
                       choices=['most_recent', 'max'],
                       help='Algorithm for computing amax from history')
    return parser


def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')
    group.add_argument('--inference_batch_times_seqlen_threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')
    group.add_argument('--max_tokens_to_oom',
                       type=int, default=12000,
                       help='Maximum number of tokens during inference'
                       'tokens here is # in prompt + # to generate'
                       'Allows us to throw an error before OOM crashes server')
    return parser

    
def _add_network_size_args(parser):
    group = parser.add_argument_group(title='network size')
    group.add_argument('--num_layers', type=int, default=None,
                       help='Number of transformer layers.')
    group.add_argument('--encoder_num_layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder_num_layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
    group.add_argument('--hidden_size', type=int, default=None,
                       help='Tansformer hidden size.')
    group.add_argument('--ffn_hidden_size', type=int, default=None,
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden_size if not provided')
    group.add_argument('--num_attention_heads', type=int, default=None,
                       help='Number of transformer attention heads.')
    group.add_argument('--num_attention_heads_kv', type=int, default=None,
                       help='Number of transformer attention heads for the keys and values.')
    group.add_argument('--kv_channels', type=int, default=None,
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
    group.add_argument('--max_position_embeddings', type=int, default=None,
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make_vocab_size_divisible_by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
    group.add_argument('--layernorm_epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
    group.add_argument('--apply_residual_connection_post_layernorm',
                       action='store_true',
                       help='If set, use original BERT residual connection '
                       'ordering.')
    group.add_argument('--use_bias', action='store_true',
                       help='If set then use bias.')  # Added during hackathon
    # Extracted from: https://github.com/facebookresearch/llama/blob/main/llama/model.py
    group.add_argument('--use_rms_norm',
                       action='store_true',
                       help='If set, use RMSNorm instead of LayerNorm.')
    group.add_argument('--use_post_ln',
                       action='store_true',
                       help='If set, use Post-LN transformer (in the notation of https://sh-tsang.medium.com/review-pre-ln-transformer-on-layer-normalization-in-the-transformer-architecture-b6c91a89e9ab).')
    group.add_argument('--onnx_safe', type=bool, required=False,
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
    # Extracted from: https://github.com/bigscience-workshop/Megatron-DeepSpeed
    group.add_argument('--glu_activation', type=str,
                       choices=megatron.model.glu_activations.GLU_ACTIVATIONS.keys(),
                       help='GLU activations to use.'
                       )
    group.add_argument('--position_embedding_type', type=lambda x: PositionEmbeddingType[x],
                       choices=list(PositionEmbeddingType),
                       default=PositionEmbeddingType.absolute,
                       help='Define position embedding type ("absolute" | "rotary"). "absolute" by default.')
    group.add_argument('--rope_scaling_factor', type=float, default=1.0,
                       help='Set the linear RoPE scaling factor for sequence interpolation.')
    group.add_argument('--rope_theta', type=float, default=10000.0,
                       help='Set RoPE theta base (llama/llama2: 1e4, codellama: 1e6).')
    # Added mainly for Falcon
    group.add_argument("--parallel_attn", action="store_true",
                       help="Whether to use parallel mlp and attn computation with a single layernorm")
    group.add_argument("--parallel_layernorm", action="store_true",
                       help="Whether to use a dedicated layernorm for the mlp in the attention")
    # Added mainly for Llama
    group.add_argument("--no_tie_embed_logits", action="store_false", dest="tie_embed_logits",
                       help=("If set, the weights of the word embedding and lm_head "
                             "are not tied"))
    group.add_argument("--sliding_window_size", type=int, default=None,
                       help="Whether to use sliding window attention for Mistral. Default is None, which means no sliding window attention.")
    return parser


def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')
    group.add_argument('--log_params_norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
    group.add_argument('--log_num_zeros_in_grad', action='store_true',
                       help='If set, calculate and log the number of zeros in gradient.')
    group.add_argument('--timing_log_level', type=int,
                       default=0, choices=range(0, 3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--barrier_with_L1_time', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.')
    group.add_argument('--timing_log_option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
    group.add_argument('--tensorboard_log_interval', type=int, default=1,
                       help='Report to tensorboard interval.')
    group.add_argument('--tensorboard_queue_size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
    group.add_argument('--log_timers_to_tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log_batch_size_to_tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--log_validation_ppl_to_tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
    group.add_argument('--log_memory_to_tensorboard',
                       action='store_true',
                       help='Enable memory logging to tensorboard.')
    group.add_argument('--log_world_size_to_tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
    group.add_argument('--wandb_logger',
                       action='store_true',
                       help='Enable logging to Weights & Biases instead of tensorboard.')
    group.add_argument('--wandb_project', type=str, default=None,
                       help='Project name for Weights & Biases.')
    group.add_argument('--wandb_entity', type=str, default="meditron",
                       help='Entity/team name for Weights & Biases.')
    group.add_argument('--wandb_id',type=str,default=None,
                       help="Unique ID to identify this run, alternatively can set `WANDB_RUN_ID`.")
    group.add_argument('--wandb_resume',action="store_true",
                       help="If set, we resume logging for the id given instead of launching a new run (errors if id given and resume=False).")
    group.add_argument("--wandb_api_key",type=str,default=None,
                       help="API key for Weights & Biases, needs to be set if not set in environment variable `WANDB_API_KEY`.")
    group.add_argument("--metrics", default=[], nargs="+", choices=list(METRICS) + ["all"],
                       help="Metrics to report when logging")
    return parser


def _add_regularization_args(parser):
    group = parser.add_argument_group(title='regularization')
    group.add_argument('--attention_dropout', type=float, default=0.1,
                       help='Post attention dropout probability.')
    group.add_argument('--hidden_dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    # see "LIMA: Less Is More for Alignment", Zhou et al 2023, https://arxiv.org/abs/2305.11206
    group.add_argument('--lima_dropout', action='store_true',
                       help='Linearly raise the hidden_dropout probability from 0.0 at the first layer to the full hidden_dropout value at the last layer.')
    group.add_argument('--weight_decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--start_weight_decay', type=float,
                       help='Initial weight decay coefficient for L2 regularization.')
    group.add_argument('--end_weight_decay', type=float,
                       help='End of run weight decay coefficient for L2 regularization.')
    group.add_argument('--weight_decay_incr_style', type=str, default='constant',
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
    group.add_argument('--clip_grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
    group.add_argument('--adam_beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
    group.add_argument('--adam_beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
    group.add_argument('--adam_eps', type=float, default=1e-08,
                       help='Term added to the denominator to improve'
                       'numerical stability')
    group.add_argument('--sgd_momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')

    return parser


def _add_training_args(parser):
    group = parser.add_argument_group(title='training')
    group.add_argument('--micro_batch_size', type=int, default=None,
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size times number of micro batches.')
    group.add_argument('--global_batch_size', type=int, default=None,
                       help='Training batch size. If set, it should be a '
                       'multiple of micro_batch_size times data-parallel-size. '
                       'If this value is None, then '
                       'use micro_batch_size * data-parallel-size as the '
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
    group.add_argument('--rampup_batch_size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup_batch_size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup_batch_size 16 8 300000 \ '
                       '   --global_batch_size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
    group.add_argument('--recompute_activations', action='store_true',
                       help='recompute activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--recompute_granularity', type=str, default=None,
                       choices=['full', 'selective'],
                       help='Checkpoint activations to allow for training '
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
                       'whole transformer layer is recomputed, '
                       '2) selective: core attention part of the transformer '
                       'layer is recomputed.')
    group.add_argument('--distribute_saved_activations',
                       action='store_true',
                       help='If set, distribute recomputed activations '
                       'across model parallel group.')
    group.add_argument('--recompute_method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and recompute the input activation of '
                       'each divided chunk at specified granularity, '
                       '2) recompute the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute_num_layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided recompute unit, '
                       '2) block: the number of individual Transformer layers '
                       'to recompute within each pipeline stage.')
    group.add_argument('--train_iters', type=int, default=None,
                       help='Total number of iterations to train over all '
                       'training runs. Note that either train_iters or '
                       'train_samples should be provided.')
    group.add_argument('--skip_iters', type=int, nargs='*', default=[],
                        help=('One or more iterations to ignore. Neither the forward '
                              'nor backward pass will be computed for this iterations'))
    group.add_argument('--train_samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train_iters or '
                       'train_samples should be provided.')
    group.add_argument('--log_interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit_interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--exit_duration_in_mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
    group.add_argument('--exit_signal_handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
    group.add_argument('--tensorboard_dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
    group.add_argument('--no_masked_softmax_fusion',
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
                       dest='masked_softmax_fusion')
    group.add_argument('--no_bias_gelu_fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no_bias_dropout_fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
    group.add_argument('--use_flash_attn', action='store_true',
                       help='use FlashAttention implementation of attention. '
                       'https://arxiv.org/abs/2205.14135')
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
    group.add_argument('--dataloader_type', type=str, default=None,
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
    group.add_argument('--no_async_tensor_model_parallel_allreduce',
                       action='store_false',
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
    group.add_argument('--no_persist_layer_norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
    group.add_argument('--sequence_parallel', action='store_true',
                       help='Enable sequence parallel optimization.')
    group.add_argument('--no_gradient_accumulation_fusion',
                       action='store_false',
                       help='Disable fusing gradient accumulation to weight '
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
    group.add_argument('--freeze_layers', action='store_true',
                       help='Freeze layers besides embedding ones.')
    return parser


def _add_initialization_args(parser):
    group = parser.add_argument_group(title='initialization')
    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--data_parallel_random_init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
    group.add_argument('--init_method_std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
    group.add_argument('--init_method_xavier_uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
    return parser


def _add_learning_rate_args(parser):
    group = parser.add_argument_group(title='learning rate')
    group.add_argument('--lr', type=float, default=None,
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr_decay_style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'inverse-square-root'],
                       help='Learning rate decay function.')
    group.add_argument('--lr_decay_iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train_iters`')
    group.add_argument('--lr_decay_samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train_samples`')
    group.add_argument('--lr_warmup_fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
    group.add_argument('--lr_warmup_iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr_warmup_samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
    group.add_argument('--min_lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override_opt_param_scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use_checkpoint_opt_param_scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')
    group.add_argument('--annealing', action='store_true',)
    return parser


def _add_checkpointing_args(parser):
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save_interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no_save_optim', action='store_true', default=None,
                       help='Do not save current optimizer.')
    group.add_argument('--no_save_rng', action='store_true', default=None,
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no_load_optim', action='store_true', default=None,
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no_load_rng', action='store_true', default=None,
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
    group.add_argument('--no_initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
    group.add_argument('--use_checkpoint_args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
    return parser


def _add_mixed_precision_args(parser):
    group = parser.add_argument_group(title='mixed precision')
    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
    group.add_argument('--loss_scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial_loss_scale', type=float, default=2**32,
                       help='Initial loss scale for dynamic loss scaling.')
    group.add_argument('--min_loss_scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss_scale_window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--fp32_residual_connection', action='store_true',
                       help='Move residual connections to fp32.')
    group.add_argument('--no_query_key_layer_scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
    group.add_argument('--attention_softmax_in_fp32', action='store_true',
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no_query_key_layer_scaling is specified.')
    group.add_argument('--accumulate_allreduce_grads_in_fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
    group.add_argument('--fp16_lm_cross_entropy',
                       action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')
    return parser


def _add_distributed_args(parser):
    group = parser.add_argument_group(title='distributed')
    group.add_argument('--tensor_model_parallel_size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline_model_parallel_size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
    group.add_argument('--pipeline_model_parallel_split_rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
    group.add_argument('--num_layers_per_virtual_pipeline_stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
    group.add_argument('--distributed_backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP_impl', default='local',
                       choices=['local', 'torch'],
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--no_contiguous_buffers_in_local_ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
    group.add_argument('--no_scatter_gather_tensors_in_pipeline',
                       action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
    group.add_argument('--use_ring_exchange_p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
    group.add_argument('--use_cpu_initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU')
    group.add_argument('--empty_unused_memory_level', default=0, type=int,
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
    group.add_argument('--standalone_embedding_stage', action='store_true',
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
    group.add_argument('--use_distributed_optimizer', action='store_true',
                       help='Use distributed optimizer.')
    return parser


def _add_validation_args(parser):
    group = parser.add_argument_group(title='validation')
    group.add_argument('--eval_iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval_interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')
    return parser


def _add_data_args(parser):
    group = parser.add_argument_group(title='data and dataloader')
    group.add_argument('--data_path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ... It is used with --split when a '
                       'single dataset used for all three: train, valid '
                       'and test. It is exclusive to the other '
                       '--*-data_path args')
    group.add_argument('--split', type=str, default='969, 30, 1',
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
    group.add_argument('--train_data_path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--valid_data_path', nargs='*', default=None,
                       help='Path to the validation dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--test_data_path', nargs='*', default=None,
                       help='Path to the test dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--vocab_file', type=str, default=None,
                       help='Path to the vocab file.')
    group.add_argument('--merge_file', type=str, default=None,
                       help='Path to the BPE merge file.')
    group.add_argument('--vocab_extra_ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
    group.add_argument('--vocab_extra_ids_list', type=str, default=None,
                       help='comma separated list of special vocab ids to add to the tokenizer')
    group.add_argument('--seq_length', type=int, default=None,
                       help='Maximum sequence length to process.')
    group.add_argument('--variable_seq_lengths', action='store_true', default=None,
                       help='Enable variable sequence lengths.')
    group.add_argument('--scalar_loss_mask', type=float, default=0.0,
                       help=('Instruction-tuning argument: Scalar to multiply the '
                             'loss of the "masked out" tokens (usually the user '
                             'tokens, not assistant ones). Set to zero (default) '
                             'to completely remove the loss of said tokens'))
    group.add_argument('--encoder_seq_length', type=int, default=None,
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq_length')
    group.add_argument('--decoder_seq_length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
    group.add_argument('--retriever_seq_length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
                       'for retriever')
    group.add_argument('--sample_rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
    group.add_argument('--mask_prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short_seq_prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap_warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num_workers', type=int, default=2,
                       help="Dataloader number of workers.")
    group.add_argument('--tokenizer_type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
                                'BertWordPieceCase',
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer',
                                'PretrainedFromHF',
                                'FalconTokenizer'],
                       help='What type of tokenizer to use.')
    group.add_argument('--tokenizer_model', type=str, default=None,
                       help='Sentencepiece tokenizer model.')
    group.add_argument("--no_new_tokens", action="store_false", dest="new_tokens",
                       help=("Do not add special tokens (e.g. CLS, MASK, etc) "
                             "in the sentenciepiece tokenizer"))
    group.add_argument('--data_impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset_position_ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset_attention_mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod_mask_loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
    return parser


def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
    group.add_argument('--adlr_autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr_autoresume_interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
    return parser


def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
    # network size
    group.add_argument('--ict_head_size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and '
                        'REALM (paper default: 128)')
    group.add_argument('--biencoder_projection_dim', type=int, default=0,
                       help='Size of projection head used in biencoder')
    group.add_argument('--biencoder_shared_query_context_model', action='store_true',
                        help='Whether to share the parameters of the query '
                        'and context models or not')
    # checkpointing
    group.add_argument('--ict_load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert_load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')

    # data
    group.add_argument('--titles_data_path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query_in_block_prob', type=float, default=0.1,
                       help='Probability of keeping query in block for '
                       'ICT dataset')
    group.add_argument('--use_one_sent_docs', action='store_true',
                       help='Whether to use one sentence documents in ICT')
    group.add_argument('--evidence_data_path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')

    # training
    group.add_argument('--retriever_report_topk_accuracies', nargs='+', type=int,
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
    group.add_argument('--retriever_score_scaling', action='store_true',
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')

    # faiss index
    group.add_argument('--block_data_path', type=str, default=None,
                       help='Where to save/load BlockData to/from')
    group.add_argument('--embedding_path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')

    # indexer
    group.add_argument('--indexer_batch_size', type=int, default=128,
                       help='How large of batches to use when doing indexing '
                       'jobs')
    group.add_argument('--indexer_log_interval', type=int, default=1000,
                       help='After how many batches should the indexer '
                       'report progress')
    return parser


def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")

    # general vision arguements
    group.add_argument('--num_classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img_h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img_w', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--num_channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch_dim', type=int, default=16,
                       help='patch dimension')
    group.add_argument('--classes_fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data_per_class_fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no_data_sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
    group.add_argument('--head_lr_mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # dino arguments
    group.add_argument('--iter_per_epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino_local_img_size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino_local_crops_number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino_head_hidden_size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino_bottleneck_size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino_freeze_last_layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino_norm_last_layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino_warmup_teacher_temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino_teacher_temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino_warmup_teacher_temp_epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
    return parser