File size: 5,974 Bytes
a93e458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# This script will try to run a task *outside* any specified submitter
# Note: This script is for archival; it is not actually run by ducttape
# unset CUDA_VISIBLE_DEVICES
echo $CUDA_VISIBLE_DEVICES
data_path="1 spgi_vox_mls_text_1b/data/data_text_document"
megatron_model="spgi_vox_mls_text_1b/shards"
model_dir="spgi_vox_mls_text_1b/ckpt"
tokenizer_path="spgi_vox_mls_text_1b/new_extended_tokenizer/tokenizer.model"
tp="2"
pp="1"
# --wandb_logger \
# --wandb_id "hajmola" \
# --wandb_project "Megatron" \
# --wandb_entity "hajmola" \
# --wandb_api_key "c4a95af43e910d14b0eca23fbb8165f94944d5af" \
# optimization arguments; self-explanatory. Intervals and steps are in terms of training optimizer steps
grad_accum_steps="12"
micro_batch_size="12"
warmup_steps="13"
eval_interval="500"
lr="3e-5" #lr="3e-5"
log_interval="10"
lr_min="3e-6" #lr_min="3e-6"
lr_scheduler="cosine"
# infra arguments
save_interval="250"
n_gpus="2"
repo="multilinguality_megatron"
gpu_ids="4,5"
train_steps="1000"
# Parse command-line arguments
for arg in "$@"
do
case $arg in
--help)
echo "Usage: ./script.sh [OPTIONS]"
echo "Options:"
echo " --data_path=PATH Path to dataset. Should have the form of <integer_0> <PATH_TO_DATA_TEXT_DOCUMENT_0> <integer_1> <PATH_TO_DATA_TEXT_DOCUMENT_1> ..., where the integers determine the data's relative weight in the training set. If every integer is equal, then the data is uniformly sampled."
echo " --megatron_model=PATH Path to sharded megatron model"
echo " --model_dir=PATH folder to save model checkpoints; if this has a checkpoint, it will be used to continue training"
echo " --tokenizer_path=PATH Path to tokenizer.model of original HF model"
echo " --tp=NUMBER Number of shards model is divided in"
echo " --pp=NUMBER Pipeline parallel (default is 1)"
echo " --grad_accum_steps=NUMBER"
echo " Number of gradient accumulation steps"
echo " --micro_batch_size=NUMBER"
echo " Micro batch size"
echo " --warmup_steps=NUMBER Number of warmup steps"
echo " --eval_interval=NUMBER Number of steps between validations"
echo " --lr=NUMBER Learning rate"
echo " --log_interval=NUMBER Number of steps between logging"
echo " --lr_min=NUMBER Minimum learning rate of scheduler"
echo " --lr_scheduler=STRING Learning rate scheduler"
echo " --save_interval=NUMBER Number of steps between saves"
echo " --n_gpus=NUMBER Number of GPUs to use"
echo " --repo=PATH Path to repo"
echo " --gpu_ids=STRING GPU IDs to use"
echo " --train_steps=NUMBER Number of training steps"
exit 0
;;
--data_path=*)
data_path="${arg#*=}"
shift
;;
--megatron_model=*)
megatron_model="${arg#*=}"
shift
;;
--model_dir=*)
model_dir="${arg#*=}"
shift
;;
--tokenizer_path=*)
tokenizer_path="${arg#*=}"
shift
;;
--tp=*)
tp="${arg#*=}"
shift
;;
--pp=*)
pp="${arg#*=}"
shift
;;
--grad_accum_steps=*)
grad_accum_steps="${arg#*=}"
shift
;;
--micro_batch_size=*)
micro_batch_size="${arg#*=}"
shift
;;
--warmup_steps=*)
warmup_steps="${arg#*=}"
shift
;;
--eval_interval=*)
eval_interval="${arg#*=}"
shift
;;
--lr=*)
lr="${arg#*=}"
shift
;;
--log_interval=*)
log_interval="${arg#*=}"
shift
;;
--lr_min=*)
lr_min="${arg#*=}"
shift
;;
--lr_scheduler=*)
lr_scheduler="${arg#*=}"
shift
;;
--save_interval=*)
save_interval="${arg#*=}"
shift
;;
--n_gpus=*)
n_gpus="${arg#*=}"
shift
;;
--repo=*)
repo="${arg#*=}"
shift
;;
--gpu_ids=*)
gpu_ids="${arg#*=}"
shift
;;
--train_steps=*)
train_steps="${arg#*=}"
shift
;;
esac
done
# CUDA_VISIBLE_DEVICES=$gpu_ids
if [ "$model_dir" != "" ]; then
mkdir -p $model_dir
mkdir -p $model_dir/runs
fi
ckpt_flag=$model_dir/latest_checkpointed_iteration.txt
if [ -f $ckpt_flag ]; then
megatron_model=$model_dir
echo Loading from previously saved checkpoint.
fi
global_batch_size=$(($micro_batch_size * $n_gpus * $grad_accum_steps))
LOG_ARGS="--log_interval $log_interval --save_interval $save_interval --eval_interval $eval_interval"
TRAIN_ARGS="--train_iters $train_steps --lr_decay_style $lr_scheduler --lr_warmup_iters $warmup_steps --lr $lr --min_lr $lr_min"
DISTRIBUTED_ARGS="--nproc_per_node $n_gpus --nnodes 1 --node_rank 0 --master_addr localhost --master_port 50000"
COMMON_ARGS="--hidden_dropout 0.0 --attention_dropout 0.0 --no_bias_gelu_fusion"
LLAMA_ARGS="--use_rms_norm --glu_activation swiglu --no_tie_embed_logits --no_new_tokens --layernorm_epsilon 1e-5"
CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun $DISTRIBUTED_ARGS $repo/finetune.py \
--tensor_model_parallel_size $tp \
--pipeline_model_parallel_size $pp \
--load $megatron_model \
--save $model_dir \
--tensorboard_dir $model_dir/runs \
--data_path $data_path \
--model_name llama \
--tokenizer_type SentencePieceTokenizer \
--vocab_file=$tokenizer_path \
--bf16 \
--use_flash_attn \
--micro_batch_size $micro_batch_size \
--global_batch_size $global_batch_size \
--sequence_parallel \
--recompute_granularity selective \
--use_checkpoint_args \
--seq_length 2048 \
--split 99,1,1 \
$COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA_ARGS
|