File size: 5,165 Bytes
6441714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from pathlib import Path
import os
import numpy as np

import os
import time
import math
from huggingface_hub import login
from datasets import load_dataset, concatenate_datasets
from functools import reduce
import pandas as pd

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

HF_TOKEN = ''
DATASET_TO_LOAD = 'PlanTL-GOB-ES/pharmaconer'
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'

CSV_FILE_NAME = "enfermedades_long.csv"

#Loggin to Huggin Face
login(token = HF_TOKEN)

dataset_CODING = load_dataset(DATASET_TO_LOAD)
dataset_CODING
royalListOfCode = {}
issues_path = 'dataset'
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
DATASET_SOURCE_ID = '7'
#Read current path
path = Path(__file__).parent.absolute()

def readCsvFIle():
    """
    """
    cantemistDstDict = {
        'raw_text': '',
        'topic': '',
        'speciallity': '',
        'raw_text_type': 'question',
        'topic_type': '',
        'source': DATASET_SOURCE_ID,
        'country': '',
        'document_id': ''
    }

    totalOfTokens = 0
    corpusToLoad = []
    countCopySeveralDocument = 0
    counteOriginalDocument = 0
    idFile = 0
    path = Path(__file__).parent.absolute()
    both_diagnostic_tratamient = open_text = type_tratamient = type_diagnostic = both_diagnostic_tratamient = 0
    df = pd.read_csv(f"{str(path)+ os.sep + CSV_FILE_NAME}",encoding='utf8')
    df = df.replace({np.nan: None})
    print(df.columns)

    for i in range(len(df)):
      
      counteOriginalDocument += 1  
      newCorpusRow = cantemistDstDict.copy()
      idFile += 1
      text = df.loc[i, 'Abstract']

      newCorpusRow['speciallity'] = df.loc[i, 'Enfermedad'] if df.loc[i, 'Enfermedad'] != None else ''

      listOfTokens = tokenizer.tokenize(text)
      currentSizeOfTokens = len(listOfTokens)
      totalOfTokens += currentSizeOfTokens  
        
      newCorpusRow['raw_text'] = text
      newCorpusRow['document_id'] = str(idFile)

      if df.loc[i, 'Tratamiento'] == None and df.loc[i, 'Diagnostico'] == None:
         open_text += 1
         newCorpusRow['topic_type'] = 'open_text'
         newCorpusRow['raw_text_type'] = 'open_text'
      elif df.loc[i, 'Tratamiento'] != None and df.loc[i, 'Diagnostico'] == None:
         type_tratamient += 1
         newCorpusRow['topic_type'] = 'medical_diagnostic'         
         newCorpusRow['topic'] = df.loc[i, 'Tratamiento']
      elif  df.loc[i, 'Tratamiento'] == None and df.loc[i, 'Diagnostico'] != None:
         type_diagnostic += 1
         newCorpusRow['topic_type'] = 'medical_topic'
         newCorpusRow['topic'] = df.loc[i, 'Diagnostico']
      elif  df.loc[i, 'Tratamiento'] != None and df.loc[i, 'Diagnostico'] != None:
         both_diagnostic_tratamient += 1
         tratmentCorpusRow = newCorpusRow.copy()

         newCorpusRow['topic_type'] = 'medical_diagnostic'
         newCorpusRow['topic'] = df.loc[i, 'Diagnostico']

         tratmentCorpusRow['topic_type'] = 'medical_topic'
         tratmentCorpusRow['topic'] = df.loc[i, 'Tratamiento']
         corpusToLoad.append(tratmentCorpusRow)

      corpusToLoad.append(newCorpusRow)
      #print(df.loc[i, "Abstract"], df.loc[i, "Diagnostico"])
    print(" Size with Open Text " + str(open_text))
    print(" Size with only tratamient " + str(type_tratamient))
    print(" Size with only diagnosti " + str(type_diagnostic))
    print(" Size with both tratamient and diagnosti " + str(both_diagnostic_tratamient))
    
    dfToHub = pd.DataFrame.from_records(corpusToLoad)

    if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
      os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")


    dfToHub.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
    print(
            f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
    )

    print(' On dataset there are as document ', counteOriginalDocument)
    print(' On dataset there are as copy document ', countCopySeveralDocument)
    print(' On dataset there are as size of Tokens ', totalOfTokens)
    file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")  # or Path('./doc.txt')
    size = file.stat().st_size
    print ('File size on Kilobytes (kB)', size >> 10)  # 5242880 kilobytes (kB)
    print ('File size on Megabytes  (MB)', size >> 20 ) # 5120 megabytes (MB)
    print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)

    ##Update local dataset with cloud dataset
    local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")

    print ('<== Local Dataset ==> ')
    print(local_spanish_dataset)

    try:  
        spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
        spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
        print('<--- Copy files --->')
    except Exception:
        spanish_dataset = local_spanish_dataset

    spanish_dataset.push_to_hub(DATASET_TO_UPDATE)

    print(spanish_dataset)
readCsvFIle()