Datasets:
File size: 10,939 Bytes
1ae9e7b e093a86 1ae9e7b 14d67e4 4b40667 14d67e4 74dbbd7 5aab553 74dbbd7 14d67e4 74dbbd7 14d67e4 1ae9e7b ca87119 1ae9e7b ca87119 1ae9e7b a1c5bf4 3659374 a1c5bf4 1ae9e7b 74dbbd7 1ae9e7b 14d67e4 1ae9e7b 1bd98cd 4b40667 1ae9e7b 9e67c4a e093a86 1ae9e7b 27b0931 1ae9e7b 8d39b6d 1ae9e7b 3f6e4c0 8d39b6d 3f6e4c0 1ae9e7b 42ded81 1ae9e7b 42ded81 1ae9e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""SQUALL: Lexical-level Supervised Table Question Answering Dataset."""
import json
import re
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{Shi:Zhao:Boyd-Graber:Daume-III:Lee-2020,
Title = {On the Potential of Lexico-logical Alignments for Semantic Parsing to {SQL} Queries},
Author = {Tianze Shi and Chen Zhao and Jordan Boyd-Graber and Hal {Daum\'{e} III} and Lillian Lee},
Booktitle = {Findings of EMNLP},
Year = {2020},
}
"""
_DESCRIPTION = """\
To explore the utility of fine-grained, lexical-level supervision, authors \
introduce SQUALL, a dataset that enriches 11,276 WikiTableQuestions \
English-language questions with manually created SQL equivalents plus \
alignments between SQL and question fragments.
"""
_URL = "https://raw.githubusercontent.com/tzshi/squall/main/data/"
# _URLS = {
# "squall": _URL + "squall.json",
# "wtq-test": _URL + "wtq-test.json",
# "dev-0": _URL + "dev-0.ids",
# "dev-1": _URL + "dev-1.ids",
# "dev-2": _URL + "dev-2.ids",
# "dev-3": _URL + "dev-3.ids",
# "dev-4": _URL + "dev-4.ids",
# }
_URLS = {
"squall": _URL,
"wtq-test": _URL,
"dev-0": _URL,
"dev-1": _URL,
"dev-2": _URL,
"dev-3": _URL,
"dev-4": _URL,
}
class SquallConfig(datasets.BuilderConfig):
"""BuilderConfig for Squall."""
def __init__(self, **kwargs):
"""BuilderConfig for Squall.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SquallConfig, self).__init__(**kwargs)
class Squall(datasets.GeneratorBasedBuilder):
"""SQUALL: Lexical-level Supervised Table Question Answering Dataset."""
BUILDER_CONFIGS = [
SquallConfig(name = '0'),
SquallConfig(name = '1'),
SquallConfig(name = '2'),
SquallConfig(name = '3'),
SquallConfig(name = '4')
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"nt": datasets.Value("string"),
"tbl": datasets.Value("string"),
"columns":
{
"raw_header": datasets.features.Sequence(datasets.Value("string")),
"tokenized_header": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
"column_suffixes": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
"column_dtype": datasets.features.Sequence(datasets.Value("string")),
"example": datasets.features.Sequence(datasets.Value("string"))
},
"nl": datasets.features.Sequence(datasets.Value("string")),
"nl_pos": datasets.features.Sequence(datasets.Value("string")),
"nl_ner": datasets.features.Sequence(datasets.Value("string")),
"nl_incolumns": datasets.features.Sequence(datasets.Value("bool_")),
"nl_incells": datasets.features.Sequence(datasets.Value("bool_")),
"columns_innl": datasets.features.Sequence(datasets.Value("bool_")),
"tgt": datasets.Value("string"),
"sql": datasets.features.Sequence(datasets.Value("string"))
# "align" is not implemented
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://github.com/tzshi/squall/",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="nl", context_column="columns", answers_column="tgt"
)
],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"split_key": "train", "filepath": downloaded_files}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"split_key": "dev", "filepath": downloaded_files}),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"split_key": "test", "filepath": downloaded_files}),
]
def _generate_examples(self, split_key, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
squall_full = filepath["squall"] + '/squall.json'
dev_ids = filepath["dev-" + self.config.name] + "/dev-" + self.config.name + ".ids"
test = filepath["wtq-test"] + "/wtq-test.json"
if split_key != 'test':
with open(squall_full, encoding="utf-8") as f:
squall_full_data = json.load(f)
NUM_MAPPING = {
'half': 0.5,
'one': 1,
'two': 2,
'three': 3,
'four': 4,
'five': 5,
'six': 6,
'seven': 7,
'eight': 8,
'nine': 9,
'ten': 10,
'eleven': 11,
'twelve': 12,
'twenty': 20,
'thirty': 30,
'once': 1,
'twice': 2,
'first': 1,
'second': 2,
'third': 3,
'fourth': 4,
'fifth': 5,
'sixth': 6,
'seventh': 7,
'eighth': 8,
'ninth': 9,
'tenth': 10,
'hundred': 100,
'thousand': 1000,
'million': 1000000,
'jan': 1,
'feb': 2,
'mar': 3,
'apr': 4,
'may': 5,
'jun': 6,
'jul': 7,
'aug': 8,
'sep': 9,
'oct': 10,
'nov': 11,
'dec': 12,
'january': 1,
'february': 2,
'march': 3,
'april': 4,
'june': 6,
'july': 7,
'august': 8,
'september': 9,
'october': 10,
'november': 11,
'december': 12,
}
def parse_number(s):
if s in NUM_MAPPING:
return NUM_MAPPING[s]
s = s.replace(',', '')
# https://stackoverflow.com/questions/4289331/python-extract-numbers-from-a-string
ret = re.findall(r"[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?", s)
if len(ret) > 0:
return ret[0]
return None
for instance in squall_full_data:
has_number = False
numbers = []
for x in instance["nl"]:
numbers.append(parse_number(x))
if numbers[-1] is not None:
has_number = True
instance["numbers"] = numbers
instance["has_number"] = has_number
with open(dev_ids) as f:
dev_ids = json.load(f)
if split_key == "train":
set = [x for x in squall_full_data if x["tbl"] not in dev_ids]
else:
set = [x for x in squall_full_data if x["tbl"] in dev_ids]
idx = 0
for sample in set:
cols = {}
keys = ["raw_header", "tokenized_header", "column_suffixes", "column_dtype", "example"]
n_col = len(sample["columns"])
for k in range(5):
tmp = []
for j in range(n_col):
tmp.append(sample["columns"][j][k])
cols[keys[k]] = tmp
sql = [x[1] for x in sample["sql"]]
yield idx, {
"nt": sample["nt"],
"tbl": sample["tbl"],
"columns": cols,
"nl": sample["nl"],
"nl_pos": sample["nl_pos"],
"nl_ner": sample["nl_ner"],
# "nl_ralign": sample["nl_ralign"],
"nl_incolumns": sample["nl_incolumns"],
"nl_incells": sample["nl_incells"],
"columns_innl": sample["columns_innl"],
"tgt": sample["tgt"],
"sql": sql,
# "align": sample["align"]
}
idx += 1
else:
with open(test, encoding="utf-8") as f:
test_data = json.load(f)
idx = 0
for sample in test_data:
cols = {}
keys = ["raw_header", "tokenized_header", "column_suffixes", "column_dtype", "example"]
n_col = len(sample["columns"])
for k in range(5):
tmp = []
for j in range(n_col):
tmp.append(sample["columns"][j][k])
cols[keys[k]] = tmp
sql = [x[1] for x in sample["sql"]]
yield idx, {
"nt": sample["nt"],
"tbl": sample["tbl"],
"columns": cols,
"nl": sample["nl"],
"nl_pos": sample["nl_pos"],
"nl_ner": sample["nl_ner"],
# "nl_ralign": sample["nl_ralign"],
"nl_incolumns": sample["nl_incolumns"],
"nl_incells": sample["nl_incells"],
"columns_innl": sample["columns_innl"],
"tgt": '',
"sql": [],
# "align": sample["align"]
}
idx += 1
|