File size: 7,047 Bytes
fca4fc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
"""
Debug wrapper for DeepSpeed training
This script allows debugging the training process step by step
"""

import os
import sys
import subprocess
import argparse
from pathlib import Path

def setup_environment():
    """Setup environment variables for debugging"""
    env_vars = {
        'RANK': '1',
        'MASTER_PORT': '29571',
        'LOCAL_BATCH_SIZE': '2',
        'GRADIENT_ACCUMULATION_STEPS': '4',
        'TRANSFORMERS_OFFLINE': '1',
        'WANDB_PROJECT': 'vtimellm',
        'MODEL_VERSION': 'vicuna-v1-5-7b',
        'OUTPUT_DIR': './outputs/',
        'STAGE4': './outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage4',
        'PYTHONPATH': f"{os.getcwd()}:{os.environ.get('PYTHONPATH', '')}",
        'CUDA_VISIBLE_DEVICES': '1',
        'TORCH_USE_CUDA_DSA': '1',
        'TRANSFORMERS_VERBOSITY': 'info',
        'TOKENIZERS_PARALLELISM': 'false'
    }
    
    for key, value in env_vars.items():
        os.environ[key] = value
    
    return env_vars

def check_required_files():
    """Check if all required files exist"""
    required_files = [
        "./checkpoints/vicuna-7b-v1.5",
        "./data/activitynet/mdpo-train.json",
        "./data/activitynet/videos/train",
        "./data/activitynet/clipvitl14-vtimellm.pth",
        "./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin",
        "./checkpoints/vtimellm-vicuna-v1-5-7b-stage2",
        "./checkpoints/vtimellm-vicuna-v1-5-7b-stage3",
        "./checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4",
        "./scripts/zero2.json"
    ]
    
    missing_files = []
    for file_path in required_files:
        if not Path(file_path).exists():
            missing_files.append(file_path)
        else:
            print(f"✓ Found: {file_path}")
    
    if missing_files:
        print("✗ Missing files:")
        for file_path in missing_files:
            print(f"  {file_path}")
        return False
    
    return True

def check_gpu():
    """Check GPU availability"""
    try:
        result = subprocess.run(['nvidia-smi', '--query-gpu=name,memory.total,memory.free', '--format=csv,noheader,nounits'], 
                              capture_output=True, text=True)
        if result.returncode == 0:
            print("=== GPU Information ===")
            print(result.stdout)
            print("========================")
            return True
        else:
            print("Warning: nvidia-smi not available or no GPU found")
            return False
    except FileNotFoundError:
        print("Warning: nvidia-smi not found")
        return False

def create_output_dir():
    """Create output directory"""
    output_dir = "./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage5"
    Path(output_dir).mkdir(parents=True, exist_ok=True)
    print(f"Created output directory: {output_dir}")
    return output_dir

def run_training():
    """Run the training with DeepSpeed"""
    env_vars = setup_environment()
    
    print("=== Debug Environment Setup ===")
    for key, value in env_vars.items():
        print(f"{key}: {value}")
    print("================================")
    
    print("=== Checking Required Files ===")
    if not check_required_files():
        print("Error: Missing required files. Please check the paths.")
        return False
    
    print("=== Checking GPU ===")
    check_gpu()
    
    print("=== Creating Output Directory ===")
    create_output_dir()
    
    # DeepSpeed command
    cmd = [
        "deepspeed",
        "--include", f"localhost:{env_vars['RANK']}",
        "--master_port", env_vars['MASTER_PORT'],
        "vtimellm/train/train_dpo_mem.py",
        "--deepspeed", "./scripts/zero2.json",
        "--lora_enable", "True",
        "--lora_r", "8",
        "--lora_alpha", "128",
        "--training_stage", "3",
        "--finetuning", "True",
        "--model_name_or_path", "./checkpoints/vicuna-7b-v1.5",
        "--version", "v1",
        "--data_path", "./data/activitynet/mdpo-train.json",
        "--data_folder", "./data/activitynet/videos/train",
        "--feat_folder", "./data/activitynet/clipvitl14-vtimellm.pth",
        "--pretrain_mm_mlp_adapter", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin",
        "--stage2_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage2",
        "--stage3_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage3",
        "--stage4_path", "checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4",
        "--output_dir", "./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage5",
        "--bf16", "True",
        "--max_steps", "100",
        "--per_device_train_batch_size", env_vars['LOCAL_BATCH_SIZE'],
        "--gradient_accumulation_steps", env_vars['GRADIENT_ACCUMULATION_STEPS'],
        "--evaluation_strategy", "no",
        "--save_strategy", "no",
        "--save_steps", "50000",
        "--save_total_limit", "10",
        "--learning_rate", "1e-6",
        "--freeze_mm_mlp_adapter", "True",
        "--weight_decay", "0.",
        "--warmup_ratio", "0.1",
        "--lr_scheduler_type", "cosine",
        "--logging_steps", "1",
        "--tf32", "True",
        "--model_max_length", "2048",
        "--gradient_checkpointing", "True",
        "--dataloader_num_workers", "4",
        "--lazy_preprocess", "True",
        "--report_to", "none",
        "--run_name", "vtimellm-vicuna-v1-5-7b-activitynet-stage5",
        "--gamma", "0.0",
        "--beta", "0.5",
        "--dpo_alpha", "1.0",
        "--train4dpo"
    ]
    
    print("=== Starting Debug Training ===")
    print(f"Command: {' '.join(cmd)}")
    print("================================")
    
    try:
        # Run the command
        result = subprocess.run(cmd, check=True)
        print("=== Training Completed Successfully ===")
        return True
    except subprocess.CalledProcessError as e:
        print(f"=== Training Failed with Error Code: {e.returncode} ===")
        return False
    except KeyboardInterrupt:
        print("=== Training Interrupted by User ===")
        return False

def main():
    parser = argparse.ArgumentParser(description="Debug wrapper for MDPO training")
    parser.add_argument("--check-only", action="store_true", help="Only check environment and files")
    parser.add_argument("--dry-run", action="store_true", help="Show command without executing")
    
    args = parser.parse_args()
    
    if args.check_only:
        setup_environment()
        check_required_files()
        check_gpu()
        create_output_dir()
        return
    
    if args.dry_run:
        env_vars = setup_environment()
        cmd = [
            "deepspeed",
            "--include", f"localhost:{env_vars['RANK']}",
            "--master_port", env_vars['MASTER_PORT'],
            "vtimellm/train/train_dpo_mem.py",
            # ... rest of arguments
        ]
        print("Command that would be executed:")
        print(" ".join(cmd))
        return
    
    success = run_training()
    sys.exit(0 if success else 1)

if __name__ == "__main__":
    main()