Datasets:
File size: 10,582 Bytes
0d8cd67 243b295 0d8cd67 243b295 ca82492 243b295 ca82492 243b295 ca82492 243b295 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 0d8cd67 ca82492 243b295 ca82492 0d8cd67 ca82492 243b295 ca82492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese.
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue).
We design various strategies to ensure the quality of the dialogues in MMChat.
"""
import json
import datasets
_CITATION = """\
@inproceedings{zheng2022MMChat,
author = {Zheng, Yinhe and Chen, Guanyi and Liu, Xin and Sun, Jian},
title = {MMChat: Multi-Modal Chat Dataset on Social Media},
booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference},
year = {2022},
publisher = {European Language Resources Association},
}
@inproceedings{wang2020chinese,
title = {A Large-Scale Chinese Short-Text Conversation Dataset},
author = {Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
booktitle = {NLPCC},
year = {2020},
url = {https://arxiv.org/abs/2008.03946}
}
"""
_DESCRIPTION = """\
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese.
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue).
We design various strategies to ensure the quality of the dialogues in MMChat.
"""
_HOMEPAGE = "https://github.com/silverriver/MMChat"
_LICENSE = "MIT"
_URLS = {
"mmchat": {
"train": [
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/dialog_train.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/img_url_train.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/weibo_train.jsonl.gz",
],
"dev": [
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/dialog_dev.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/img_url_dev.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/weibo_dev.jsonl.gz",
],
"test": [
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/dialog_test.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/img_url_test.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/weibo_test.jsonl.gz",
],
},
"mmchat_hf": [
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/dialog.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/weibo_img_expanded_url.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/weibo.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/human_annotation.jsonl.gz",
],
"mmchat_raw": [
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/dialog_raw.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/weibo_img_expanded_url_raw.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/weibo_raw.jsonl.gz",
],
"mmchat_lccc_filtered": [
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/dialog_lccc_flt.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/weibo_img_expanded_url_lccc_flt.jsonl.gz",
"https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/weibo_lccc_flt.jsonl.gz",
],
}
class MMChat(datasets.GeneratorBasedBuilder):
"""Multi-Modal Chat Dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="mmchat", version=VERSION, description="The MMChat dataset"),
datasets.BuilderConfig(name="mmchat_hf", version=VERSION, description="Human filtered version of MMChat"),
datasets.BuilderConfig(name="mmchat_raw", version=VERSION, description="Raw dialogues in MMChat"),
datasets.BuilderConfig(name="mmchat_lccc_filtered", version=VERSION, description="LCCC filtered MMChat"),
]
DEFAULT_CONFIG_NAME = "mmchat"
def _info(self):
if self.config.name in ["mmchat", "mmchat_raw", "mmchat_lccc_filtered"]:
features = datasets.Features(
{
"dialog": [datasets.Value("string")],
"weibo_content": datasets.Value("string"),
"imgs": [datasets.Value("string")],
}
)
else:
features = datasets.Features(
{
"dialog": [datasets.Value("string")],
"weibo_content": datasets.Value("string"),
"imgs": [datasets.Value("string")],
"labels": {
"image_qualified": datasets.Value("bool"),
"dialog_qualified": datasets.Value("bool"),
"dialog_image_related": datasets.Value("bool"),
},
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
if self.config.name == "mmchat":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dialog_file": data_dir["train"][0],
"weibo_file": data_dir["train"][2],
"img_file": data_dir["train"][1],
"label_file": None,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"dialog_file": data_dir["test"][0],
"weibo_file": data_dir["test"][2],
"img_file": data_dir["test"][1],
"label_file": None,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"dialog_file": data_dir["dev"][0],
"weibo_file": data_dir["dev"][2],
"img_file": data_dir["dev"][1],
"label_file": None,
},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"dialog_file": data_dir[0],
"weibo_file": data_dir[2],
"img_file": data_dir[1],
"label_file": data_dir[3] if len(data_dir) == 4 else None,
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, dialog_file, weibo_file, img_file, label_file):
id = 0
if label_file is not None:
label_f = open(label_file, encoding="utf-8")
with open(dialog_file, encoding="utf-8") as dialog_f, open(weibo_file, encoding="utf-8") as weibo_f, open(
img_file, encoding="utf-8"
) as img_f:
while True:
try:
dialog_line = dialog_f.readline().strip()
if len(dialog_line) == 0:
break
dialog = json.loads(dialog_line) # dialog_f.readline())
weibo = json.loads(weibo_f.readline())
if self.config.name == "mmchat":
imgs = img_f.readline().strip().split(";")
else:
imgs = json.loads(img_f.readline())["weibo_img"].split(";")
if self.config.name == "mmchat_hf":
label = json.loads(label_f.readline())
# Yields examples as (key, example) tuples
yield id, {
"dialog": dialog,
"weibo_content": weibo,
"imgs": imgs,
"labels": {
"image_qualified": True if label["image_quality"] == "1" else False,
"dialog_qualified": True if label["dialog_quality"] == "1" else False,
"dialog_image_related": True if label["dialog_image_relativeness"] == "1" else False,
},
}
else:
yield id, {
"dialog": dialog,
"weibo_content": weibo,
"imgs": imgs,
}
id += 1
except EOFError:
break
if label_file is not None:
label_f.close()
|