Datasets:

Modalities:
Text
Languages:
Chinese
ArXiv:
Libraries:
Datasets
License:
File size: 10,582 Bytes
0d8cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243b295
0d8cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243b295
 
ca82492
 
 
 
243b295
ca82492
 
 
 
243b295
ca82492
 
 
243b295
ca82492
 
 
 
 
 
 
0d8cd67
ca82492
 
 
0d8cd67
 
ca82492
 
 
0d8cd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca82492
 
 
 
0d8cd67
 
 
 
 
ca82492
 
 
 
0d8cd67
 
 
 
 
ca82492
 
 
 
0d8cd67
 
 
ca82492
0d8cd67
 
 
 
ca82492
 
 
 
0d8cd67
 
 
 
 
ca82492
0d8cd67
ca82492
 
 
 
243b295
 
ca82492
 
 
 
0d8cd67
ca82492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243b295
ca82492
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese.
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue).
We design various strategies to ensure the quality of the dialogues in MMChat.
"""

import json

import datasets


_CITATION = """\
@inproceedings{zheng2022MMChat,
author    = {Zheng, Yinhe and Chen, Guanyi and Liu, Xin and Sun, Jian},
title     = {MMChat: Multi-Modal Chat Dataset on Social Media},
booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference},
year      = {2022},
publisher = {European Language Resources Association},
}

@inproceedings{wang2020chinese,
  title     = {A Large-Scale Chinese Short-Text Conversation Dataset},
  author    = {Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
  booktitle = {NLPCC},
  year      = {2020},
  url       = {https://arxiv.org/abs/2008.03946}
}
"""

_DESCRIPTION = """\
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese.
Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue).
We design various strategies to ensure the quality of the dialogues in MMChat.
"""

_HOMEPAGE = "https://github.com/silverriver/MMChat"

_LICENSE = "MIT"

_URLS = {
    "mmchat": {
        "train": [
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/dialog_train.jsonl.gz",
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/img_url_train.jsonl.gz",
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/weibo_train.jsonl.gz",
        ],
        "dev": [
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/dialog_dev.jsonl.gz",
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/img_url_dev.jsonl.gz",
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/weibo_dev.jsonl.gz",
        ],
        "test": [
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/dialog_test.jsonl.gz",
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/img_url_test.jsonl.gz",
            "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat/weibo_test.jsonl.gz",
        ],
    },
    "mmchat_hf": [
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/dialog.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/weibo_img_expanded_url.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/weibo.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_hf/human_annotation.jsonl.gz",
    ],
    "mmchat_raw": [
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/dialog_raw.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/weibo_img_expanded_url_raw.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_raw/weibo_raw.jsonl.gz",
    ],
    "mmchat_lccc_filtered": [
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/dialog_lccc_flt.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/weibo_img_expanded_url_lccc_flt.jsonl.gz",
        "https://huggingface.co/datasets/silver/mmchat/resolve/main/mmchat_lccc_filtered/weibo_lccc_flt.jsonl.gz",
    ],
}


class MMChat(datasets.GeneratorBasedBuilder):
    """Multi-Modal Chat Dataset."""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="mmchat", version=VERSION, description="The MMChat dataset"),
        datasets.BuilderConfig(name="mmchat_hf", version=VERSION, description="Human filtered version of MMChat"),
        datasets.BuilderConfig(name="mmchat_raw", version=VERSION, description="Raw dialogues in MMChat"),
        datasets.BuilderConfig(name="mmchat_lccc_filtered", version=VERSION, description="LCCC filtered MMChat"),
    ]

    DEFAULT_CONFIG_NAME = "mmchat"

    def _info(self):
        if self.config.name in ["mmchat", "mmchat_raw", "mmchat_lccc_filtered"]:
            features = datasets.Features(
                {
                    "dialog": [datasets.Value("string")],
                    "weibo_content": datasets.Value("string"),
                    "imgs": [datasets.Value("string")],
                }
            )
        else:
            features = datasets.Features(
                {
                    "dialog": [datasets.Value("string")],
                    "weibo_content": datasets.Value("string"),
                    "imgs": [datasets.Value("string")],
                    "labels": {
                        "image_qualified": datasets.Value("bool"),
                        "dialog_qualified": datasets.Value("bool"),
                        "dialog_image_related": datasets.Value("bool"),
                    },
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        if self.config.name == "mmchat":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "dialog_file": data_dir["train"][0],
                        "weibo_file": data_dir["train"][2],
                        "img_file": data_dir["train"][1],
                        "label_file": None,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "dialog_file": data_dir["test"][0],
                        "weibo_file": data_dir["test"][2],
                        "img_file": data_dir["test"][1],
                        "label_file": None,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "dialog_file": data_dir["dev"][0],
                        "weibo_file": data_dir["dev"][2],
                        "img_file": data_dir["dev"][1],
                        "label_file": None,
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "dialog_file": data_dir[0],
                        "weibo_file": data_dir[2],
                        "img_file": data_dir[1],
                        "label_file": data_dir[3] if len(data_dir) == 4 else None,
                    },
                ),
            ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, dialog_file, weibo_file, img_file, label_file):
        id = 0
        if label_file is not None:
            label_f = open(label_file, encoding="utf-8")

        with open(dialog_file, encoding="utf-8") as dialog_f, open(weibo_file, encoding="utf-8") as weibo_f, open(
            img_file, encoding="utf-8"
        ) as img_f:
            while True:
                try:
                    dialog_line = dialog_f.readline().strip()
                    if len(dialog_line) == 0:
                        break
                    dialog = json.loads(dialog_line)  # dialog_f.readline())
                    weibo = json.loads(weibo_f.readline())
                    if self.config.name == "mmchat":
                        imgs = img_f.readline().strip().split(";")
                    else:
                        imgs = json.loads(img_f.readline())["weibo_img"].split(";")

                    if self.config.name == "mmchat_hf":
                        label = json.loads(label_f.readline())
                        # Yields examples as (key, example) tuples
                        yield id, {
                            "dialog": dialog,
                            "weibo_content": weibo,
                            "imgs": imgs,
                            "labels": {
                                "image_qualified": True if label["image_quality"] == "1" else False,
                                "dialog_qualified": True if label["dialog_quality"] == "1" else False,
                                "dialog_image_related": True if label["dialog_image_relativeness"] == "1" else False,
                            },
                        }
                    else:
                        yield id, {
                            "dialog": dialog,
                            "weibo_content": weibo,
                            "imgs": imgs,
                        }
                    id += 1
                except EOFError:
                    break
        if label_file is not None:
            label_f.close()