File size: 10,572 Bytes
7a6289f 3982eb7 7a6289f 4ec4542 7a6289f 4ec4542 7a6289f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Discourse marker prediction with 174 different markers"""
import csv
import os
import textwrap
import datasets
_Discovery_CITATION = """@inproceedings{sileo-etal-2019-mining,
title = "Mining Discourse Markers for Unsupervised Sentence Representation Learning",
author = "Sileo, Damien and
Van De Cruys, Tim and
Pradel, Camille and
Muller, Philippe",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/N19-1351",
pages = "3477--3486",
abstract = "Current state of the art systems in NLP heavily rely on manually annotated datasets, which are expensive to construct. Very little work adequately exploits unannotated data {--} such as discourse markers between sentences {--} mainly because of data sparseness and ineffective extraction methods. In the present work, we propose a method to automatically discover sentence pairs with relevant discourse markers, and apply it to massive amounts of data. Our resulting dataset contains 174 discourse markers with at least 10k examples each, even for rare markers such as {``}coincidentally{''} or {``}amazingly{''}. We use the resulting data as supervision for learning transferable sentence embeddings. In addition, we show that even though sentence representation learning through prediction of discourse marker yields state of the art results across different transfer tasks, it{'}s not clear that our models made use of the semantic relation between sentences, thus leaving room for further improvements.",
}
"""
_Discovery_DESCRIPTION = r"""\
Discourse marker prediction with 174 different markers
https://github.com/synapse-developpement/Discovery
"""
DATA_URL = "https://www.dropbox.com/s/aox84z90nyyuikz/discovery.zip?dl=1"
LABELS = [
"[no-conn]",
"absolutely,",
"accordingly",
"actually,",
"additionally",
"admittedly,",
"afterward",
"again,",
"already,",
"also,",
"alternately,",
"alternatively",
"although,",
"altogether,",
"amazingly,",
"and",
"anyway,",
"apparently,",
"arguably,",
"as_a_result,",
"basically,",
"because_of_that",
"because_of_this",
"besides,",
"but",
"by_comparison,",
"by_contrast,",
"by_doing_this,",
"by_then",
"certainly,",
"clearly,",
"coincidentally,",
"collectively,",
"consequently",
"conversely",
"curiously,",
"currently,",
"elsewhere,",
"especially,",
"essentially,",
"eventually,",
"evidently,",
"finally,",
"first,",
"firstly,",
"for_example",
"for_instance",
"fortunately,",
"frankly,",
"frequently,",
"further,",
"furthermore",
"generally,",
"gradually,",
"happily,",
"hence,",
"here,",
"historically,",
"honestly,",
"hopefully,",
"however",
"ideally,",
"immediately,",
"importantly,",
"in_contrast,",
"in_fact,",
"in_other_words",
"in_particular,",
"in_short,",
"in_sum,",
"in_the_end,",
"in_the_meantime,",
"in_turn,",
"incidentally,",
"increasingly,",
"indeed,",
"inevitably,",
"initially,",
"instead,",
"interestingly,",
"ironically,",
"lastly,",
"lately,",
"later,",
"likewise,",
"locally,",
"luckily,",
"maybe,",
"meaning,",
"meantime,",
"meanwhile,",
"moreover",
"mostly,",
"namely,",
"nationally,",
"naturally,",
"nevertheless",
"next,",
"nonetheless",
"normally,",
"notably,",
"now,",
"obviously,",
"occasionally,",
"oddly,",
"often,",
"on_the_contrary,",
"on_the_other_hand",
"once,",
"only,",
"optionally,",
"or,",
"originally,",
"otherwise,",
"overall,",
"particularly,",
"perhaps,",
"personally,",
"plus,",
"preferably,",
"presently,",
"presumably,",
"previously,",
"probably,",
"rather,",
"realistically,",
"really,",
"recently,",
"regardless,",
"remarkably,",
"sadly,",
"second,",
"secondly,",
"separately,",
"seriously,",
"significantly,",
"similarly,",
"simultaneously",
"slowly,",
"so,",
"sometimes,",
"soon,",
"specifically,",
"still,",
"strangely,",
"subsequently,",
"suddenly,",
"supposedly,",
"surely,",
"surprisingly,",
"technically,",
"thankfully,",
"then,",
"theoretically,",
"thereafter,",
"thereby,",
"therefore",
"third,",
"thirdly,",
"this,",
"though,",
"thus,",
"together,",
"traditionally,",
"truly,",
"truthfully,",
"typically,",
"ultimately,",
"undoubtedly,",
"unfortunately,",
"unsurprisingly,",
"usually,",
"well,",
"yet,",
]
class DiscoveryConfig(datasets.BuilderConfig):
"""BuilderConfig for Discovery."""
def __init__(
self,
text_features,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for Discovery.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(DiscoveryConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = "label"
self.label_classes = LABELS
self.data_url = DATA_URL
self.data_dir = os.path.join("discovery", self.name)
self.citation = textwrap.dedent(_Discovery_CITATION)
self.process_label = process_label
self.description = ""
self.url = ""
class Discovery(datasets.GeneratorBasedBuilder):
"""Discourse marker prediction with 174 different markers"""
BUILDER_CONFIG_CLASS = DiscoveryConfig
DEFAULT_CONFIG_NAME = "discovery"
BUILDER_CONFIGS = [
DiscoveryConfig(
name="discovery",
text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
),
DiscoveryConfig(
name="discoverysmall",
text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_Discovery_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _Discovery_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.tsv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "dev.tsv"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "test.tsv"),
"split": "test",
},
),
]
def _generate_examples(self, data_file, split):
process_label = self.config.process_label
label_classes = self.config.label_classes
with open(data_file, encoding="utf8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
example = {feat: row[col] for feat, col in self.config.text_features.items()}
example["idx"] = n
if self.config.label_column in row:
label = row[self.config.label_column]
if label_classes and label not in label_classes:
label = int(label) if label else None
example["label"] = process_label(label)
else:
example["label"] = process_label(-1)
yield example["idx"], example
|