File size: 8,349 Bytes
672f30e 1d9dac8 672f30e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: MSCOCO
size_categories: []
source_datasets:
- original
tags:
- image-captioning
- object-detection
- keypoint-detection
- stuff-segmentation
- panoptic-segmentation
task_categories:
- image-segmentation
- object-detection
- other
task_ids:
- instance-segmentation
- semantic-segmentation
- panoptic-segmentation
---
# Dataset Card for MSCOCO
[![CI](https://github.com/shunk031/huggingface-datasets_MSCOCO/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_MSCOCO/actions/workflows/ci.yaml)
## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://cocodataset.org/#home
- **Repository:** https://github.com/shunk031/huggingface-datasets_MSCOCO
- **Paper (Preprint):** https://arxiv.org/abs/1405.0312
- **Paper (ECCV2014):** https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48
- **Leaderboard (Detection):** https://cocodataset.org/#detection-leaderboard
- **Leaderboard (Keypoint):** https://cocodataset.org/#keypoints-leaderboard
- **Leaderboard (Stuff):** https://cocodataset.org/#stuff-leaderboard
- **Leaderboard (Panoptic):** https://cocodataset.org/#panoptic-leaderboard
- **Leaderboard (Captioning):** https://cocodataset.org/#captions-leaderboard
- **Point of Contact:** info@cocodataset.org
### Dataset Summary
> COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:
> - Object segmentation
> - Recognition in context
> - Superpixel stuff segmentation
> - 330K images (>200K labeled)
> - 1.5 million object instances
> - 80 object categories
> - 91 stuff categories
> - 5 captions per image
> - 250,000 people with keypoints
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
#### 2014
- captioning dataset
```python
import datasets as ds
dataset = ds.load_dataset(
"shunk031/MSCOCO",
year=2014,
coco_task="captions",
)
```
- instances dataset
```python
import datasets as ds
dataset = ds.load_dataset(
"shunk031/MSCOCO",
year=2014,
coco_task="instances",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)
```
- person keypoints dataset
```python
import datasets as ds
dataset = ds.load_dataset(
"shunk031/MSCOCO",
year=2014,
coco_task="person_keypoints",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)
```
#### 2017
- captioning dataset
```python
import datasets as ds
dataset = ds.load_dataset(
"shunk031/MSCOCO",
year=2017,
coco_task="captions",
)
```
- instances dataset
```python
import datasets as ds
dataset = ds.load_dataset(
"shunk031/MSCOCO",
year=2017,
coco_task="instances",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)
```
- person keypoints dataset
```python
import datasets as ds
dataset = ds.load_dataset(
"shunk031/MSCOCO",
year=2017,
coco_task="person_keypoints",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)
```
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
> The annotations in this dataset along with this website belong to the COCO Consortium and are licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode).
>
> ## Images
> The COCO Consortium does not own the copyright of the images. Use of the images must abide by the Flickr Terms of Use. The users of the images accept full responsibility for the use of the dataset, including but not limited to the use of any copies of copyrighted images that they may create from the dataset.
>
> ## Software
> Copyright (c) 2015, COCO Consortium. All rights reserved. Redistribution and use software in source and binary form, with or without modification, are permitted provided that the following conditions are met:
> - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
> - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
> - Neither the name of the COCO Consortium nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
>
> THIS SOFTWARE AND ANNOTATIONS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
### Citation Information
```bibtex
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={Computer Vision--ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13},
pages={740--755},
year={2014},
organization={Springer}
}
```
### Contributions
Thanks to [COCO Consortium](https://cocodataset.org/#people) for creating this dataset.
|