File size: 12,877 Bytes
0c12e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086148d
0c12e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6249f3
0c12e64
 
 
 
 
 
 
 
 
 
 
086148d
 
 
 
 
0c12e64
 
 
 
 
 
086148d
0c12e64
 
 
 
 
086148d
 
0c12e64
086148d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c12e64
 
 
086148d
0c12e64
086148d
0c12e64
086148d
0c12e64
 
 
 
086148d
0c12e64
 
 
 
 
 
 
086148d
0c12e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086148d
0c12e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086148d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c12e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086148d
 
 
0c12e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2024 Shunsuke Kitada and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script was generated from shunk031/cookiecutter-huggingface-datasets.
#
import json
import os
import re
from dataclasses import dataclass
from typing import List

import datasets as ds
from datasets.utils.logging import get_logger

logger = get_logger(__name__)

_CITATION = """\
@inproceedings{JDocQA_2024,
    title = "JDocQA: Japanese Document Question Answering Dataset for Generative Language Models",
    author = "Onami, Eri  and
      Kurita, Shuhei  and
      Miyanishi, Taiki and
      Watanabe, Taro",
    booktitle = "The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation",
    month = may,
    year = "2024",
    address = "Trino, Italy",
    abstract = "Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation.",
}
"""

_DESCRIPTION = """\
Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese.
"""

_HOMEPAGE = "https://github.com/mizuumi/JDocQA"

_LICENSE = "JDocQA dataset annotations are distributed under CC BY-SA 4.0. We are delighted to see many derivations from JDocQA! When you create any derivations, e.g., datasets, papers, etc, from JDocQA, please cite our paper accordingly. If your derivations are web-based projects, please cite our paper and include the link to this github page."

_URLS = {
    "annotations": {
        "train": "https://raw.githubusercontent.com/mizuumi/JDocQA/main/dataset/annotation_files/jdocqa_train_all.json",
        "validation": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_validation_all.json",
        "test": "https://github.com/mizuumi/JDocQA/raw/main/dataset/annotation_files/jdocqa_test_all.json",
    },
    "documents": "https://vlm-lab-fileshare.s3.ap-northeast-1.amazonaws.com/pdf_files.zip",
}


@dataclass
class JDocQADatasetConfig(ds.BuilderConfig):
    rename_pdf_category: bool = False


class JDocQADataset(ds.GeneratorBasedBuilder):
    """A class for loading JDocQA dataset."""

    VERSION = ds.Version("1.0.0")

    BUILDER_CONFIGS = [
        JDocQADatasetConfig(
            version=VERSION,
            description=_DESCRIPTION,
        ),
    ]

    BUILDER_CONFIG_CLASS = JDocQADatasetConfig

    def _info(self) -> ds.DatasetInfo:
        answer_type = ds.ClassLabel(
            num_classes=4,
            names=["yes/no", "factoid", "numerical", "open-ended"],
        )
        multiple_select_answer = ds.ClassLabel(
            num_classes=4,
            names=["A", "B", "C", "D"],
        )
        no_reason = ds.ClassLabel(
            num_classes=4,
            names=["0", "1", "2", "1,2"],
        )
        pdf_category = ds.ClassLabel(
            num_classes=4,
            names=["Report", "Pamphlet", "Slide", "Website"]
            if self.config.rename_pdf_category  # type: ignore
            else ["Document", "Kouhou", "Slide", "Website"],
        )
        type_of_image = ds.ClassLabel(
            num_classes=10,
            names=[
                "null",
                "Table",
                "Bar chart",
                "Line chart",
                "Pie chart",
                "Map",
                "Other figures",
                "Mixtured writing style from left to the right and from upside to the downside",
                "Drawings",
                "Others",
            ],
        )
        features = ds.Features(
            {
                "answer": ds.Value("string"),
                "answer_type": answer_type,
                "context": ds.Value("string"),
                "multiple_select_answer": multiple_select_answer,
                "multiple_select_question": ds.Sequence(ds.Value("string")),
                "no_reason": no_reason,
                "normalized_answer": ds.Value("string"),
                "original_answer": ds.Value("string"),
                "original_context": ds.Value("string"),
                "original_question": ds.Value("string"),
                "pdf_category": pdf_category,
                "pdf_name": ds.Value("string"),
                "question": ds.Value("string"),
                "question_number": ds.Sequence(ds.Value("uint64")),
                "question_page_number": ds.Value("string"),
                "reason_of_answer_bbox": ds.Sequence(ds.Value("string")),
                "text_from_ocr_pdf": ds.Value("string"),
                "text_from_pdf": ds.Value("string"),
                "type_of_image": ds.Sequence(type_of_image),
                #
                # `pdf_filepath` is added to the original dataset for convenience
                "pdf_filepath": ds.Value("string"),
            }
        )
        return ds.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: ds.DownloadManager
    ) -> List[ds.SplitGenerator]:
        files = dl_manager.download_and_extract(_URLS)

        tng_ann_filepath = files["annotations"]["train"]  # type: ignore
        val_ann_filepath = files["annotations"]["validation"]  # type: ignore
        tst_ann_filepath = files["annotations"]["test"]  # type: ignore

        documents_dirpath = os.path.join(files["documents"], "pdf_files")  # type: ignore

        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,  # type: ignore
                gen_kwargs={
                    "annotation_path": tng_ann_filepath,
                    "documents_dir": documents_dirpath,
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,  # type: ignore
                gen_kwargs={
                    "annotation_path": val_ann_filepath,
                    "documents_dir": documents_dirpath,
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.TEST,  # type: ignore
                gen_kwargs={
                    "annotation_path": tst_ann_filepath,
                    "documents_dir": documents_dirpath,
                },
            ),
        ]

    def _convert_answer_type(self, answer_type: str) -> str:
        if answer_type == "1":
            return "yes/no"
        elif answer_type == "2":
            return "factoid"
        elif answer_type == "3":
            return "numerical"
        elif answer_type == "4":
            return "open-ended"
        else:
            raise ValueError(f"Unknown answer type: {answer_type}")

    def _convert_multiple_select_question(
        self, multiple_select_question: str
    ) -> List[str]:
        _, qs = multiple_select_question.split("(A)")

        questions = []
        for sep in ("(B)", "(C)", "(D)"):
            q, qs = qs.split(sep)
            questions.append(q)
        questions.append(qs)

        assert (
            len(questions) == 4
        ), f"Before: {multiple_select_question}, After: {questions}"

        questions = [question.rstrip("、") for question in questions]
        return questions

    def _convert_question_number(self, question_number: str) -> List[int]:
        return [int(qn) for qn in question_number.split("-")]

    def _convert_reason_of_answer_bbox(self, reason_of_answer_bbox: str) -> List[str]:
        reason_of_answer_bboxes = [
            r for r in re.split(r"[.,、、]", reason_of_answer_bbox)
        ]
        check = [r.isdigit() if r != "" else r == "" for r in reason_of_answer_bboxes]
        assert all(check), reason_of_answer_bboxes
        return reason_of_answer_bboxes

    def _convert_type_of_image(self, type_of_image: str) -> List[str]:
        types_of_image = type_of_image.split(",")

        def convert_to_type_of_image(type_of_image: str) -> str:
            if type_of_image == "":
                return "null"
            elif type_of_image == "1":
                return "Table"
            elif type_of_image == "2":
                return "Bar chart"
            elif type_of_image == "3":
                return "Line chart"
            elif type_of_image == "4":
                return "Pie chart"
            elif type_of_image == "5":
                return "Map"
            elif type_of_image == "6":
                return "Other figures"
            elif type_of_image == "7":
                return "Mixtured writing style from left to the right and from upside to the downside"
            elif type_of_image == "8":
                return "Drawings"
            elif type_of_image == "9":
                return "Others"
            else:
                raise ValueError(f"Unknown type of image: {type_of_image}")

        return [convert_to_type_of_image(t) for t in types_of_image]

    def _convert_pdf_category(self, pdf_category: str) -> str:
        if not self.config.rename_pdf_category:  # type: ignore
            return pdf_category

        if pdf_category == "Document":
            return "Report"
        elif pdf_category == "Kouhou":
            return "Pamphlet"
        else:
            assert pdf_category in (
                "Slide",
                "Website",
            ), f"Unknown pdf_category: {pdf_category}"
            return pdf_category

    def _get_pdf_fielpath(self, pdf_name: str, documents_dir: str) -> str:
        pdf_filepath = os.path.join(documents_dir, pdf_name)
        assert os.path.exists(pdf_filepath), f"File not found: {pdf_filepath}"
        return pdf_filepath

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, annotation_path: str, documents_dir: str):
        with open(annotation_path) as rf:
            for i, line in enumerate(rf):
                data = json.loads(line)

                data["answer_type"] = self._convert_answer_type(
                    answer_type=data["answer_type"]
                )
                data["multiple_select_question"] = (
                    self._convert_multiple_select_question(
                        multiple_select_question=data["multiple_select_question"]
                    )
                )
                data["pdf_category"] = self._convert_pdf_category(
                    pdf_category=data["pdf_category"]
                )
                data["question_number"] = self._convert_question_number(
                    data["question_number"]
                )
                data["reason_of_answer_bbox"] = self._convert_reason_of_answer_bbox(
                    data["reason_of_answer_bbox"]
                )
                data["type_of_image"] = self._convert_type_of_image(
                    type_of_image=data["type_of_image"]
                )
                data["pdf_filepath"] = self._get_pdf_fielpath(
                    pdf_name=data["pdf_name"],
                    documents_dir=documents_dir,
                )

                yield i, data