File size: 5,784 Bytes
fd5a00a
 
 
 
 
5c16c8b
fd5a00a
5c16c8b
 
fd5a00a
 
 
 
 
c8897a2
fd5a00a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019caf
 
fd5a00a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
annotations_creators:
- shibing624
language_creators:
- shibing624
language:
- zh
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<20M
source_datasets:
- https://github.com/shibing624/text2vec
- https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC
- http://icrc.hitsz.edu.cn/info/1037/1162.htm
- http://icrc.hitsz.edu.cn/Article/show/171.html
- https://arxiv.org/abs/1908.11828
- https://github.com/pluto-junzeng/CNSD
task_categories:
- text-classification
- text-scoring
task_ids:
- natural-language-inference
- semantic-similarity-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference
---
# Dataset Card for NLI_zh
## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)
## Dataset Description
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
- **Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec) (located on the homepage)
- **Size of downloaded dataset files:** 16 MB
- **Total amount of disk used:** 42 MB
### Dataset Summary

常见中文语义匹配数据集,包含[ATEC](https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC)、[BQ](http://icrc.hitsz.edu.cn/info/1037/1162.htm)、[LCQMC](http://icrc.hitsz.edu.cn/Article/show/171.html)、[PAWSX](https://arxiv.org/abs/1908.11828)、[STS-B](https://github.com/pluto-junzeng/CNSD)共5个任务。

数据源:

- ATEC: https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC
- BQ: http://icrc.hitsz.edu.cn/info/1037/1162.htm
- LCQMC: http://icrc.hitsz.edu.cn/Article/show/171.html
- PAWSX: https://arxiv.org/abs/1908.11828
- STS-B: https://github.com/pluto-junzeng/CNSD


### Supported Tasks and Leaderboards

Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。

中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:

**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec) 

### Languages

数据集均是简体中文文本。

## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
  "sentence1": "刘诗诗杨幂谁漂亮",
  "sentence2": "刘诗诗和杨幂谁漂亮",
  "label": 1,
}
{
  "sentence1": "汇理财怎么样",
  "sentence2": "怎么样去理财",
  "label": 0,
}
```

### Data Fields
The data fields are the same among all splits.

- `sentence1`: a `string` feature.
- `sentence2`: a `string` feature.
- `label`: a classification label, with possible values including `similarity` (1), `dissimilarity` (0).

### Data Splits

#### ATEC

```shell
$ wc -l ATEC/*
   20000 ATEC/ATEC.test.data
   62477 ATEC/ATEC.train.data
   20000 ATEC/ATEC.valid.data
  102477 total
```

#### BQ

```shell
$ wc -l BQ/*
   10000 BQ/BQ.test.data
  100000 BQ/BQ.train.data
   10000 BQ/BQ.valid.data
  120000 total
```

#### LCQMC

```shell
$ wc -l LCQMC/*
   12500 LCQMC/LCQMC.test.data
  238766 LCQMC/LCQMC.train.data
    8802 LCQMC/LCQMC.valid.data
  260068 total
```

#### PAWSX

```shell
$ wc -l PAWSX/*
    2000 PAWSX/PAWSX.test.data
   49401 PAWSX/PAWSX.train.data
    2000 PAWSX/PAWSX.valid.data
   53401 total
```

#### STS-B

```shell
$ wc -l STS-B/*
    1361 STS-B/STS-B.test.data
    5231 STS-B/STS-B.train.data
    1458 STS-B/STS-B.valid.data
    8050 total
```

## Dataset Creation
### Curation Rationale
作为中文NLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。

BQ: Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, Buzhou Tang, The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification EMNLP2018. 
### Annotations
#### Annotation process

#### Who are the annotators?
原作者。

### Personal and Sensitive Information

## Considerations for Using the Data
### Social Impact of Dataset
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context. 

Systems that are successful at such a task may be more successful in modeling semantic representations.
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators

- 苏剑林对文件名称有整理
- 我上传到huggingface的datasets

### Licensing Information

用于学术研究。

The BQ corpus is free to the public for academic research.


### Contributions

Thanks to [@shibing624](https://github.com/shibing624) add this dataset.