File size: 2,521 Bytes
22cb23f
 
44bb99f
 
 
 
 
 
 
 
 
 
 
22cb23f
44bb99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2bd570
44bb99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: cc-by-4.0
task_categories:
- image-classification
- image-to-video
language:
- en
tags:
- self-supervised learning
- representation learning
pretty_name: Walking_Tours
size_categories:
- n<1K
---
# Walking Tours Dataset

## Overview

We introduce the Walking Tours dataset (WTours), a unique collection of long-range egocentric videos captured in an urban setting from various cities in Europe and Asia. It consists of 10 high-resolution videos, each showcasing a person walking through different urban environments, ranging from city centers to parks to residential areas under different lighting conditions. Additionally, a video from a Wildlife safari is included to diversify the dataset.

## Cities Covered

The dataset encompasses walks through the following cities:

- Amsterdam
- Bangkok
- Chiang Mai
- Istanbul
- Kuala Lumpur
- Singapore
- Stockholm
- Venice
- Zurich

![](path/to/Example_Gif_1.gif)  ![](path/to/Example_Gif_1.gif)  ![](path/to/Example_Gif_1.gif)

## Video Specifications

- **Resolution:** 4K (3840 × 2160 pixels)
- **Frame Rate:** 60 frames-per-second
- **License:** Creative Commons License (CC-BY)

## Duration

The videos vary in duration, offering a diverse range of content:

- Minimum Duration: 59 minutes (Wildlife safari)
- Maximum Duration: 2 hours 55 minutes (Bangkok)
- Average Duration: 1 hour 38 minutes


## Usage

The complete list of WTour videos are available in ```WTour.txt```, comprising the YouTube link and the corresponding city.  

To download the dataset, we first install **pytube**
```
pip install pytube
```

then, we run 
```
python download_WTours.py --output_folder <path_to_folder> 
```

In order to comply with [GDPR](https://gdpr.eu/what-is-gdpr/), we also try to blur out all faces and license plates appearing in the video using [Deface](https://github.com/ORB-HD/deface)  

To do this for all videos in WTour dataset:
```
python3 -m pip install deface
```
Then run Deface on all videos using the bash script:
```
chmod a+x gdpr_blur_faces.sh  
./gdpr_blur_faces.sh
```


## Citation

If you find this work useful and use it on your own research, please cite our paper:

```
@inproceedings{venkataramanan2023imagenet,  
  title={Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video},  
  author={Venkataramanan, Shashanka and Rizve, Mamshad Nayeem and Carreira, Jo{\~a}o and Asano, Yuki M and Avrithis, Yannis},  
  booktitle={International Conference on Learning Representations},  
  year={2024}  
}
```
---