File size: 3,903 Bytes
82832ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3a134
 
 
 
 
ec521f0
82832ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import csv
import os

import datasets

_CITATION = """\
@article{jeon2022user,
  title={User Guide for KOTE: Korean Online Comments Emotions Dataset},
  author={Jeon, Duyoung and Lee, Junho and Kim, Cheongtag},
  journal={arXiv preprint arXiv:2205.05300},
  year={2022}
}
"""

_DESCRIPTION = """\
50k Korean online comments labeled for 44 emotion categories.
"""

_HOMEPAGE = "https://github.com/searle-j/KOTE"

_LICENSE = "MIT License"

_BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/"

_LABELS = [
'๋ถˆํ‰/๋ถˆ๋งŒ',
 'ํ™˜์˜/ํ˜ธ์˜',
 '๊ฐ๋™/๊ฐํƒ„',
 '์ง€๊ธ‹์ง€๊ธ‹',
 '๊ณ ๋งˆ์›€',
 '์Šฌํ””',
 'ํ™”๋‚จ/๋ถ„๋…ธ',
 '์กด๊ฒฝ',
 '๊ธฐ๋Œ€๊ฐ',
 '์šฐ์ญ๋Œ/๋ฌด์‹œํ•จ',
 '์•ˆํƒ€๊นŒ์›€/์‹ค๋ง',
 '๋น„์žฅํ•จ',
 '์˜์‹ฌ/๋ถˆ์‹ ',
 '๋ฟŒ๋“ฏํ•จ',
 'ํŽธ์•ˆ/์พŒ์ ',
 '์‹ ๊ธฐํ•จ/๊ด€์‹ฌ',
 '์•„๊ปด์ฃผ๋Š”',
 '๋ถ€๋„๋Ÿฌ์›€',
 '๊ณตํฌ/๋ฌด์„œ์›€',
 '์ ˆ๋ง',
 'ํ•œ์‹ฌํ•จ',
 '์—ญ๊ฒจ์›€/์ง•๊ทธ๋Ÿฌ์›€',
 '์งœ์ฆ',
 '์–ด์ด์—†์Œ',
 '์—†์Œ',
 'ํŒจ๋ฐฐ/์ž๊ธฐํ˜์˜ค',
 '๊ท€์ฐฎ์Œ',
 'ํž˜๋“ฆ/์ง€์นจ',
 '์ฆ๊ฑฐ์›€/์‹ ๋‚จ',
 '๊นจ๋‹ฌ์Œ',
 '์ฃ„์ฑ…๊ฐ',
 '์ฆ์˜ค/ํ˜์˜ค',
 'ํ๋ญ‡ํ•จ(๊ท€์—ฌ์›€/์˜ˆ์จ)',
 '๋‹นํ™ฉ/๋‚œ์ฒ˜',
 '๊ฒฝ์•…',
 '๋ถ€๋‹ด/์•ˆ_๋‚ดํ‚ด',
 '์„œ๋Ÿฌ์›€',
 '์žฌ๋ฏธ์—†์Œ',
 '๋ถˆ์Œํ•จ/์—ฐ๋ฏผ',
 '๋†€๋žŒ',
 'ํ–‰๋ณต',
 '๋ถˆ์•ˆ/๊ฑฑ์ •',
 '๊ธฐ์จ',
 '์•ˆ์‹ฌ/์‹ ๋ขฐ'
]

class KOTEConfig(datasets.BuilderConfig):
    @property
    def features(self):
        if self.name == "dichotomized":
            return {
                "ID": datasets.Value("string"),
                "text": datasets.Value("string"),
                "labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)),
            }

class KOTE(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")]
    BUILDER_CONFIG_CLASS = KOTEConfig
    DEFAULT_CONFIG_NAME = "dichotomized"
    
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(self.config.features),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )
    
    
    def _split_generators(self, dl_manager):
        if self.config.name=="dichotomized":
            train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv"))
            test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv"))
            val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv"))
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}),
                datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}),
                datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}),
            ]
            
    def _generate_examples(self, filepaths):
        if self.config.name=="dichotomized":
            for filepath in filepaths:
                with open(filepath, mode="r", encoding="utf-8") as f:
                    reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys()))
                    for idx, row in enumerate(reader):
                        row["labels"] = [int(lab) for lab in row["labels"].split(",")]
                        yield idx, row