Datasets:
File size: 3,903 Bytes
82832ad 6a3a134 ec521f0 82832ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import csv
import os
import datasets
_CITATION = """\
@article{jeon2022user,
title={User Guide for KOTE: Korean Online Comments Emotions Dataset},
author={Jeon, Duyoung and Lee, Junho and Kim, Cheongtag},
journal={arXiv preprint arXiv:2205.05300},
year={2022}
}
"""
_DESCRIPTION = """\
50k Korean online comments labeled for 44 emotion categories.
"""
_HOMEPAGE = "https://github.com/searle-j/KOTE"
_LICENSE = "MIT License"
_BASE_URL = "https://raw.githubusercontent.com/searle-j/KOTE/main/"
_LABELS = [
'๋ถํ/๋ถ๋ง',
'ํ์/ํธ์',
'๊ฐ๋/๊ฐํ',
'์ง๊ธ์ง๊ธ',
'๊ณ ๋ง์',
'์ฌํ',
'ํ๋จ/๋ถ๋
ธ',
'์กด๊ฒฝ',
'๊ธฐ๋๊ฐ',
'์ฐ์ญ๋/๋ฌด์ํจ',
'์ํ๊น์/์ค๋ง',
'๋น์ฅํจ',
'์์ฌ/๋ถ์ ',
'๋ฟ๋ฏํจ',
'ํธ์/์พ์ ',
'์ ๊ธฐํจ/๊ด์ฌ',
'์๊ปด์ฃผ๋',
'๋ถ๋๋ฌ์',
'๊ณตํฌ/๋ฌด์์',
'์ ๋ง',
'ํ์ฌํจ',
'์ญ๊ฒจ์/์ง๊ทธ๋ฌ์',
'์ง์ฆ',
'์ด์ด์์',
'์์',
'ํจ๋ฐฐ/์๊ธฐํ์ค',
'๊ท์ฐฎ์',
'ํ๋ฆ/์ง์นจ',
'์ฆ๊ฑฐ์/์ ๋จ',
'๊นจ๋ฌ์',
'์ฃ์ฑ
๊ฐ',
'์ฆ์ค/ํ์ค',
'ํ๋ญํจ(๊ท์ฌ์/์์จ)',
'๋นํฉ/๋์ฒ',
'๊ฒฝ์
',
'๋ถ๋ด/์_๋ดํด',
'์๋ฌ์',
'์ฌ๋ฏธ์์',
'๋ถ์ํจ/์ฐ๋ฏผ',
'๋๋',
'ํ๋ณต',
'๋ถ์/๊ฑฑ์ ',
'๊ธฐ์จ',
'์์ฌ/์ ๋ขฐ'
]
class KOTEConfig(datasets.BuilderConfig):
@property
def features(self):
if self.name == "dichotomized":
return {
"ID": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": datasets.Sequence(datasets.ClassLabel(names=_LABELS)),
}
class KOTE(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [KOTEConfig(name="dichotomized")]
BUILDER_CONFIG_CLASS = KOTEConfig
DEFAULT_CONFIG_NAME = "dichotomized"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(self.config.features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name=="dichotomized":
train_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "train.tsv"))
test_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "test.tsv"))
val_path = dl_manager.download_and_extract(os.path.join(_BASE_URL, "val.tsv"))
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": [train_path],}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [test_path],}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [val_path],}),
]
def _generate_examples(self, filepaths):
if self.config.name=="dichotomized":
for filepath in filepaths:
with open(filepath, mode="r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", fieldnames=list(self.config.features.keys()))
for idx, row in enumerate(reader):
row["labels"] = [int(lab) for lab in row["labels"].split(",")]
yield idx, row |