Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
Tagalog
Size:
10K - 100K
DOI:
License:
File size: 2,651 Bytes
479ccc7 ace560f 479ccc7 ace560f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: mpl-2.0
task_categories:
- text-classification
language:
- tl
tags:
- reviews
- shopee
size_categories:
- 10K<n<100K
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:** [Enhancement to Low Resource Text Classification via Sequential Transfer Learning](#)
- **Leaderboard:**
- **Point of Contact:** [Neil Riego](mailto:neilchristianriego3@gmail.com)
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
A typical data point, comprises of a text and the corresponding label.
An example from the YelpReviewFull test set looks as follows:
```
{
'label': pos,
'text': 'Huyyy ang gandaaaaaaaaaaa. Grabe sobrang ganda talaga wala ako masabi. Complete orders pa pinadala sa akin. Buti hindi nabasag kahit walang bubble wrap. Okay na lang din para save mother earth and at least hindi nabasag hehe. Oorder ulit ako ang ganda eh'
}
```
### Data Fields
- 'text': The review texts are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes ("").
- 'label': Corresponds to the score associated with the review (between positive and negative).
### Data Splits
The Shopee reviews tl binary dataset is constructed by randomly taking 14000 training samples and 3000 samples for testing and validation for each review star from neg and pos.
In total there are 28000 training samples and 6000 each in validation and testing samples.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |