File size: 3,593 Bytes
dee8ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d3314
 
 
c56e48e
 
 
 
 
dee8ec3
 
 
 
 
c2586cd
 
6afe0cf
 
 
 
 
dee8ec3
cd052a2
 
 
7d3de1a
0b15aee
cd052a2
387f42a
cd052a2
 
 
 
 
387f42a
cd052a2
 
 
387f42a
cd052a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3588e19
 
 
387f42a
3588e19
387f42a
3588e19
387f42a
ec4b09c
 
53422d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
dataset_info:
  features:
  - name: q_id
    dtype: int64
  - name: question
    dtype: string
  - name: choice0
    dtype: string
  - name: choice1
    dtype: string
  - name: choice2
    dtype: string
  - name: choice3
    dtype: string
  - name: choice4
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 1183800
    num_examples: 8939
  - name: validation
    num_bytes: 148287
    num_examples: 1119
  download_size: 2637820
  dataset_size: 1332087
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
license: cc-by-sa-4.0
task_categories:
- question-answering
language:
- ja
---

評価スコアの再現性確保と SB Intuitions 修正版の公開用クローン

ソース: [yahoojapan/JGLUE on GitHub](https://github.com/yahoojapan/JGLUE/tree/main)
- [datasets/jcommonsenseqa-v1.1](https://github.com/yahoojapan/JGLUE/tree/main/datasets/jcommonsenseqa-v1.1)

# JCommonsenseQA

> JCommonsenseQA is a Japanese version of CommonsenseQA (Talmor+, 2019), which is a multiple-choice question answering dataset that requires commonsense reasoning ability.
> It is built using crowdsourcing with seeds extracted from the knowledge base ConceptNet.


## Licensing Information

[Creative Commons Attribution Share Alike 4.0 International](https://github.com/yahoojapan/JGLUE/blob/main/LICENSE)

## Citation Information

```
@article{栗原 健太郎2023,
  title={JGLUE: 日本語言語理解ベンチマーク},
  author={栗原 健太郎 and 河原 大輔 and 柴田 知秀},
  journal={自然言語処理},
  volume={30},
  number={1},
  pages={63-87},
  year={2023},
  url = "https://www.jstage.jst.go.jp/article/jnlp/30/1/30_63/_article/-char/ja",
  doi={10.5715/jnlp.30.63}
}

@inproceedings{kurihara-etal-2022-jglue,
    title = "{JGLUE}: {J}apanese General Language Understanding Evaluation",
    author = "Kurihara, Kentaro  and
      Kawahara, Daisuke  and
      Shibata, Tomohide",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.317",
    pages = "2957--2966",
    abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.",
}

@InProceedings{Kurihara_nlp2022,
  author = 	"栗原健太郎 and 河原大輔 and 柴田知秀",
  title = 	"JGLUE: 日本語言語理解ベンチマーク",
  booktitle = 	"言語処理学会第28回年次大会",
  year =	"2022",
  url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf"
  note= "in Japanese"
}
```


# Subsets

## default

- `q_id` (`str`): 質問を一意識別するための ID
- `question` (`str`): 質問文, (未 NFKC正規化)
- `choice{0..4}` (`str`): 選択肢(`choice0``choice4` の 5つ), (未 NFKC正規化)
- `label` (`int`): `choice{0..4}` に対応した正解選択肢のインデックス(0-4)