dataset_info:
features:
- name: content
dtype: large_string
- name: url
dtype: large_string
- name: branch
dtype: large_string
- name: source
dtype: large_string
- name: embeddings
list: float64
- name: score
dtype: float64
splits:
- name: train
num_bytes: 103214272
num_examples: 15084
download_size: 57429042
dataset_size: 103214272
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Knowledge Base Documentation Dataset
A comprehensive, pre-processed and vectorized dataset containing documentation from 25+ popular open-source projects and cloud platforms, optimized for Retrieval-Augmented Generation (RAG) applications.
π Dataset Overview
This dataset aggregates technical documentation from leading open-source projects across cloud-native, DevOps, machine learning, and infrastructure domains. Each document has been chunked and embedded using the all-MiniLM-L6-v2 sentence transformer model.
Dataset ID: saidsef/knowledge-base-docs
π― Sources
The dataset includes documentation from the following projects:
| Source | Domain | File Types |
|---|---|---|
| kubernetes | Container Orchestration | Markdown |
| terraform | Infrastructure as Code | MDX |
| kustomize | Kubernetes Configuration | Markdown |
| ingress-nginx | Kubernetes Ingress | Markdown |
| helm | Package Management | Markdown |
| external-secrets | Secrets Management | Markdown |
| prometheus | Monitoring | Markdown |
| argo-cd | GitOps | Markdown |
| istio | Service Mesh | Markdown |
| scikit-learn | Machine Learning | RST |
| cilium | Networking & Security | RST |
| redis | In-Memory Database | Markdown |
| grafana | Observability | Markdown |
| docker | Containerization | Markdown |
| linux | Operating System | RST |
| ckad-exercises | Kubernetes Certification | Markdown |
| aws-eks-best-practices | AWS EKS | Markdown |
| gcp-professional-services | Google Cloud | Markdown |
| external-dns | DNS Management | Markdown |
| google-kubernetes-engine | GKE | Markdown |
| consul | Service Mesh | Markdown |
| vault | Secrets Management | MDX |
| tekton | CI/CD | Markdown |
| model-context-protocol-mcp | AI Context Protocol | Markdown |
π Dataset Schema
Each row in the dataset contains the following fields:
| Field | Type | Description |
|---|---|---|
content |
string | Chunked text content (500 words with 50-word overlap) |
original_id |
int/float | Reference to the original document ID |
embeddings |
list[float] | 384-dimensional embedding vector from all-MiniLM-L6-v2 |
π§ Dataset Creation Process
1. Data Collection
- Shallow clone of 25+ GitHub repositories
- Extraction of documentation files (
.md,.mdx,.rst)
2. Content Processing
- Removal of YAML frontmatter
- Conversion to LLM-friendly markdown format
- Stripping of scripts, styles, and media elements
- Code block preservation with proper formatting
3. Text Chunking
- Chunk size: 500 words
- Overlap: 50 words
- Ensures semantic continuity across chunks
4. Vectorization
- Model:
all-MiniLM-L6-v2 - Embedding dimensions: 384
- Normalization: Enabled for cosine similarity
- Pre-computed embeddings for fast retrieval
5. Storage Format
- Format: Apache Parquet
- Compression: Optimized for query performance
- File:
knowledge_base.parquet
π» Usage Examples
Loading the Dataset
import pandas as pd
from datasets import load_dataset
# From Hugging Face Hub
dataset = load_dataset("saidsef/knowledge-base-docs")
df = dataset['train'].to_pandas()
# From local Parquet file
df = pd.read_parquet("knowledge_base.parquet", engine="pyarrow")
Semantic Search / RAG Implementation
import numpy as np
from sentence_transformers import SentenceTransformer
# Load the same model used for embedding
model = SentenceTransformer('all-MiniLM-L6-v2', trust_remote_code=True)
def retrieve(query, df, k=5):
"""Retrieve top-k most relevant documents using cosine similarity"""
# Encode the query
query_vec = model.encode(query, normalize_embeddings=True)
# Convert embeddings to matrix
embeddings_matrix = np.vstack(df['embeddings'].values)
# Calculate cosine similarity
norms = np.linalg.norm(embeddings_matrix, axis=1) * np.linalg.norm(query_vec)
scores = np.dot(embeddings_matrix, query_vec) / norms
# Add scores and sort
df['score'] = scores
return df.sort_values(by='score', ascending=False).head(k)
# Example query
results = retrieve("How do I configure an nginx ingress controller?", df, k=3)
print(results[['content', 'score']])
Building a RAG Pipeline
from transformers import pipeline
# Load a question-answering model
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
def rag_answer(question, df, k=3):
"""RAG: Retrieve relevant context and generate answer"""
# Retrieve relevant documents
context_rows = retrieve(question, df, k=k)
context_text = " ".join(context_rows['content'].tolist())
# Generate answer
result = qa_pipeline(question=question, context=context_text)
return result['answer'], context_rows
answer, sources = rag_answer("What is a Kubernetes pod?", df)
print(f"Answer: {answer}")
π Dataset Statistics
# Total chunks
print(f"Total chunks: {len(df)}")
# Average chunk length
df['chunk_length'] = df['content'].apply(lambda x: len(x.split()))
print(f"Average chunk length: {df['chunk_length'].mean():.0f} words")
# Embedding dimensionality
print(f"Embedding dimensions: {len(df['embeddings'].iloc[0])}")
π Use Cases
- RAG Applications: Build retrieval-augmented generation systems
- Semantic Search: Find relevant documentation across multiple projects
- Question Answering: Create technical support chatbots
- Documentation Assistant: Help developers navigate complex documentation
- Learning Resources: Train models on high-quality technical content
- Comparative Analysis: Compare documentation approaches across projects
π Performance Considerations
- Pre-computed embeddings: No need for runtime encoding
- Optimized retrieval: Matrix multiplication for fast cosine similarity
- Parquet format: Efficient storage and query performance
- Chunk overlap: Better context preservation across boundaries
π οΈ Requirements
pandas>=2.0.0
numpy>=1.24.0
sentence-transformers>=2.0.0
pyarrow>=12.0.0
datasets>=2.0.0
π License
This dataset is a compilation of documentation from various open-source projects. Each source maintains its original license:
- Most projects use Apache 2.0 or MIT licenses
- Refer to individual project repositories for specific licensing terms
π€ Contributing
To add new sources or update existing documentation:
- Add the source configuration to the
siteslist - Run the data collection pipeline
- Verify content processing and embedding quality
- Submit a pull request with updated dataset
π§ Contact
For questions, issues, or suggestions, please open an issue on the GitHub repository or contact the maintainer.
π Acknowledgments
Special thanks to all the open-source projects that maintain excellent documentation, making this dataset possible.
Last Updated: December 2025
Version: 1.0
Embedding Model: all-MiniLM-L6-v2
Total Sources: 25+