File size: 76,345 Bytes
7167911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
# Comparing model predictions and ground truth labels with Rubrix and Hugging Face

## Build dataset

You skip this step if you run:



```python
from datasets import load_dataset
import rubrix as rb

ds = rb.DatasetForTextClassification.from_datasets(load_dataset("rubrix/sst2_with_predictions", split="train"))
```

Otherwise, the following cell will run the pipeline over the training set and store labels and predictions.


```python
from datasets import load_dataset
from transformers import pipeline, AutoModelForSequenceClassification

import rubrix as rb

name = "distilbert-base-uncased-finetuned-sst-2-english"

# Need to define id2label because surprisingly the pipeline has uppercase label names 
model = AutoModelForSequenceClassification.from_pretrained(name, id2label={0: 'negative', 1: 'positive'})
nlp = pipeline("sentiment-analysis", model=model, tokenizer=name, return_all_scores=True)

dataset = load_dataset("glue", "sst2", split="train")

# batch predict
def predict(example):
    return {"prediction": nlp(example["sentence"])}

# add predictions to the dataset
dataset = dataset.map(predict, batched=True).rename_column("sentence", "text")

# build rubrix dataset from hf dataset
ds = rb.DatasetForTextClassification.from_datasets(dataset, annotation="label")
```


```python
# Install Rubrix and start exploring and sharing URLs with interesting subsets, etc.
rb.log(ds, "sst2")
```


```python
ds.to_datasets().push_to_hub("rubrix/sst2_with_predictions")
```


    Pushing dataset shards to the dataset hub:   0%|          | 0/1 [00:00<?, ?it/s]


## Analize misspredictions and ambiguous labels

### With the UI

With Rubrix UI you can:

- Combine filters and full-text/DSL queries to quickly find important samples
- All URLs contain the state so you can share with collaborator and annotator specific dataset regions to work on.
- Sort examples by score, as well as custom metadata fields.



![example.png](example.png)


### Programmatically

Let's find all wrong predictions from Python. This useful for bulk operations (relabelling, discarding, etc.)


```python
import pandas as pd

# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko").to_pandas()

# display first 20 examples
with pd.option_context('display.max_colwidth', None):
    display(df[["text", "prediction", "annotation"]].head(20))
```


<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>text</th>
      <th>prediction</th>
      <th>annotation</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>this particular , anciently demanding métier</td>
      <td>[(negative, 0.9386059045791626), (positive, 0.06139408051967621)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>1</th>
      <td>under our skin</td>
      <td>[(positive, 0.7508484721183777), (negative, 0.24915160238742828)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>2</th>
      <td>evokes a palpable sense of disconnection , made all the more poignant by the incessant use of cell phones .</td>
      <td>[(negative, 0.6634528636932373), (positive, 0.3365470767021179)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>3</th>
      <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
      <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>4</th>
      <td>into a pulpy concept that , in many other hands would be completely forgettable</td>
      <td>[(positive, 0.6178210377693176), (negative, 0.3821789622306824)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>5</th>
      <td>transcends ethnic lines .</td>
      <td>[(positive, 0.9758220314979553), (negative, 0.024177948012948036)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>6</th>
      <td>is barely</td>
      <td>[(negative, 0.9922297596931458), (positive, 0.00777028314769268)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>7</th>
      <td>a pulpy concept that , in many other hands would be completely forgettable</td>
      <td>[(negative, 0.9738760590553284), (positive, 0.026123959571123123)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>8</th>
      <td>of hollywood heart-string plucking</td>
      <td>[(positive, 0.9889695644378662), (negative, 0.011030420660972595)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>9</th>
      <td>a minimalist beauty and the beast</td>
      <td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>10</th>
      <td>the intimate , unguarded moments of folks who live in unusual homes --</td>
      <td>[(positive, 0.9967381358146667), (negative, 0.0032618637196719646)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>11</th>
      <td>steals the show</td>
      <td>[(negative, 0.8031412363052368), (positive, 0.1968587338924408)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>12</th>
      <td>enough</td>
      <td>[(positive, 0.7941301465034485), (negative, 0.2058698982000351)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>13</th>
      <td>accept it as life and</td>
      <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>14</th>
      <td>this is the kind of movie that you only need to watch for about thirty seconds before you say to yourself , ` ah , yes ,</td>
      <td>[(negative, 0.7889454960823059), (positive, 0.21105451881885529)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>15</th>
      <td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
      <td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>16</th>
      <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
      <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>17</th>
      <td>troubled and determined homicide cop</td>
      <td>[(negative, 0.6632784008979797), (positive, 0.33672159910202026)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>18</th>
      <td>human nature is a goofball movie , in the way that malkovich was , but it tries too hard</td>
      <td>[(positive, 0.5959018468856812), (negative, 0.40409812331199646)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>19</th>
      <td>to watch too many barney videos</td>
      <td>[(negative, 0.9909896850585938), (positive, 0.00901023019105196)]</td>
      <td>positive</td>
    </tr>
  </tbody>
</table>
</div>



```python
df.annotation.hist()
```




    <AxesSubplot:>




    
![png](output_9_1.png)
    



```python
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko and annotated_as:negative").to_pandas()

# display first 20 examples
with pd.option_context('display.max_colwidth', None):
    display(df[["text", "prediction", "annotation"]].head(20))
```


<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>text</th>
      <th>prediction</th>
      <th>annotation</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
      <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>1</th>
      <td>a minimalist beauty and the beast</td>
      <td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>2</th>
      <td>accept it as life and</td>
      <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>3</th>
      <td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
      <td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>4</th>
      <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
      <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>5</th>
      <td>and social commentary</td>
      <td>[(positive, 0.7863275408744812), (negative, 0.2136724889278412)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>6</th>
      <td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
      <td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>7</th>
      <td>before pulling the plug on the conspirators and averting an american-russian armageddon</td>
      <td>[(positive, 0.6992855072021484), (negative, 0.30071452260017395)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>8</th>
      <td>in tight pants and big tits</td>
      <td>[(positive, 0.7850217819213867), (negative, 0.2149781733751297)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>9</th>
      <td>that it certainly does n't feel like a film that strays past the two and a half mark</td>
      <td>[(positive, 0.6591460108757019), (negative, 0.3408539891242981)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>10</th>
      <td>actress-producer and writer</td>
      <td>[(positive, 0.8167378306388855), (negative, 0.1832621842622757)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>11</th>
      <td>gives devastating testimony to both people 's capacity for evil and their heroic capacity for good .</td>
      <td>[(positive, 0.8960123062133789), (negative, 0.10398765653371811)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>12</th>
      <td>deep into the girls ' confusion and pain as they struggle tragically to comprehend the chasm of knowledge that 's opened between them</td>
      <td>[(positive, 0.9729612469673157), (negative, 0.027038726955652237)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>13</th>
      <td>a younger lad in zen and the art of getting laid in this prickly indie comedy of manners and misanthropy</td>
      <td>[(positive, 0.9875985980033875), (negative, 0.012401451356709003)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>14</th>
      <td>get on a board and , uh , shred ,</td>
      <td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>15</th>
      <td>so preachy-keen and</td>
      <td>[(positive, 0.9644021391868591), (negative, 0.035597823560237885)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>16</th>
      <td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
      <td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>17</th>
      <td>` christian bale 's quinn ( is ) a leather clad grunge-pirate with a hairdo like gandalf in a wind-tunnel and a simply astounding cor-blimey-luv-a-duck cockney accent . '</td>
      <td>[(positive, 0.9713286757469177), (negative, 0.028671346604824066)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>18</th>
      <td>passion , grief and fear</td>
      <td>[(positive, 0.9849751591682434), (negative, 0.015024829655885696)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>19</th>
      <td>to keep the extremes of screwball farce and blood-curdling family intensity on one continuum</td>
      <td>[(positive, 0.8838250637054443), (negative, 0.11617499589920044)]</td>
      <td>negative</td>
    </tr>
  </tbody>
</table>
</div>



```python
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko and score:{0.99 TO *}").to_pandas()

# display first 20 examples
with pd.option_context('display.max_colwidth', None):
    display(df[["text", "prediction", "annotation"]].head(20))
```


<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>text</th>
      <th>prediction</th>
      <th>annotation</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
      <td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>1</th>
      <td>accept it as life and</td>
      <td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>2</th>
      <td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
      <td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>3</th>
      <td>will no doubt rally to its cause , trotting out threadbare standbys like ` masterpiece ' and ` triumph ' and all that malarkey ,</td>
      <td>[(negative, 0.9936562180519104), (positive, 0.006343740504235029)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>4</th>
      <td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
      <td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>5</th>
      <td>somehow manages to bring together kevin pollak , former wrestler chyna and dolly parton</td>
      <td>[(negative, 0.9979034662246704), (positive, 0.002096540294587612)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>6</th>
      <td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
      <td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>7</th>
      <td>the bottom line with nemesis is the same as it has been with all the films in the series : fans will undoubtedly enjoy it , and the uncommitted need n't waste their time on it</td>
      <td>[(positive, 0.995850682258606), (negative, 0.004149340093135834)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>8</th>
      <td>is genial but never inspired , and little</td>
      <td>[(negative, 0.9921030402183533), (positive, 0.007896988652646542)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>9</th>
      <td>heaped upon a project of such vast proportions need to reap more rewards than spiffy bluescreen technique and stylish weaponry .</td>
      <td>[(negative, 0.9958089590072632), (positive, 0.004191054962575436)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>10</th>
      <td>than recommended -- as visually bland as a dentist 's waiting room , complete with soothing muzak and a cushion of predictable narrative rhythms</td>
      <td>[(negative, 0.9988711476325989), (positive, 0.0011287889210507274)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>11</th>
      <td>spectacle and</td>
      <td>[(positive, 0.9941601753234863), (negative, 0.005839805118739605)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>12</th>
      <td>groan and</td>
      <td>[(negative, 0.9987359642982483), (positive, 0.0012639997294172645)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>13</th>
      <td>'re not likely to have seen before , but beneath the exotic surface ( and exotic dancing ) it 's surprisingly old-fashioned .</td>
      <td>[(positive, 0.9908103942871094), (negative, 0.009189637377858162)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>14</th>
      <td>its metaphors are opaque enough to avoid didacticism , and</td>
      <td>[(negative, 0.990602970123291), (positive, 0.00939704105257988)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>15</th>
      <td>by kevin bray , whose crisp framing , edgy camera work , and wholesale ineptitude with acting , tone and pace very obviously mark him as a video helmer making his feature debut</td>
      <td>[(positive, 0.9973387122154236), (negative, 0.0026612314395606518)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>16</th>
      <td>evokes the frustration , the awkwardness and the euphoria of growing up , without relying on the usual tropes .</td>
      <td>[(positive, 0.9989104270935059), (negative, 0.0010896018939092755)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>17</th>
      <td>, incoherence and sub-sophomoric</td>
      <td>[(negative, 0.9962475895881653), (positive, 0.003752368036657572)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>18</th>
      <td>seems intimidated by both her subject matter and the period trappings of this debut venture into the heritage business .</td>
      <td>[(negative, 0.9923072457313538), (positive, 0.007692818529903889)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>19</th>
      <td>despite downplaying her good looks , carries a little too much ai n't - she-cute baggage into her lead role as a troubled and determined homicide cop to quite pull off the heavy stuff .</td>
      <td>[(negative, 0.9948075413703918), (positive, 0.005192441400140524)]</td>
      <td>positive</td>
    </tr>
  </tbody>
</table>
</div>



```python
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko and score:{* TO 0.6}").to_pandas()

# display first 20 examples
with pd.option_context('display.max_colwidth', None):
    display(df[["text", "prediction", "annotation"]].head(20))
```


<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>text</th>
      <th>prediction</th>
      <th>annotation</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>get on a board and , uh , shred ,</td>
      <td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>1</th>
      <td>is , truly and thankfully , a one-of-a-kind work</td>
      <td>[(positive, 0.5819814801216125), (negative, 0.41801854968070984)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>2</th>
      <td>starts as a tart little lemon drop of a movie and</td>
      <td>[(negative, 0.5641832947731018), (positive, 0.4358167052268982)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>3</th>
      <td>between flaccid satire and what</td>
      <td>[(negative, 0.5532692074775696), (positive, 0.44673076272010803)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>4</th>
      <td>it certainly does n't feel like a film that strays past the two and a half mark</td>
      <td>[(negative, 0.5386656522750854), (positive, 0.46133431792259216)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>5</th>
      <td>who liked there 's something about mary and both american pie movies</td>
      <td>[(negative, 0.5086333751678467), (positive, 0.4913666248321533)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>6</th>
      <td>many good ideas as bad is the cold comfort that chin 's film serves up with style and empathy</td>
      <td>[(positive, 0.557632327079773), (negative, 0.44236767292022705)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>7</th>
      <td>about its ideas and</td>
      <td>[(positive, 0.518638551235199), (negative, 0.48136141896247864)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>8</th>
      <td>of a sick and evil woman</td>
      <td>[(negative, 0.5554516315460205), (positive, 0.4445483684539795)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>9</th>
      <td>though this rude and crude film does deliver a few gut-busting laughs</td>
      <td>[(positive, 0.5045541524887085), (negative, 0.4954459071159363)]</td>
      <td>negative</td>
    </tr>
    <tr>
      <th>10</th>
      <td>to squeeze the action and our emotions into the all-too-familiar dramatic arc of the holocaust escape story</td>
      <td>[(negative, 0.5050069093704224), (positive, 0.49499306082725525)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>11</th>
      <td>that throws a bunch of hot-button items in the viewer 's face and asks to be seen as hip , winking social commentary</td>
      <td>[(negative, 0.5873904228210449), (positive, 0.41260960698127747)]</td>
      <td>positive</td>
    </tr>
    <tr>
      <th>12</th>
      <td>'s soulful and unslick</td>
      <td>[(positive, 0.5931627750396729), (negative, 0.40683719515800476)]</td>
      <td>negative</td>
    </tr>
  </tbody>
</table>
</div>



```python
from rubrix.metrics.commons import *
```


```python
text_length("sst2", query="predicted:ko").visualize()
```


<div>                            <div id="69fd8db0-ad05-4a8f-b29a-74d01faccda8" class="plotly-graph-div" style="height:525px; width:100%;"></div>            <script type="text/javascript">                require(["plotly"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById("69fd8db0-ad05-4a8f-b29a-74d01faccda8")) {                    Plotly.newPlot(                        "69fd8db0-ad05-4a8f-b29a-74d01faccda8",                        [{"type":"bar","x":[5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0],"y":[9,3,5,9,11,17,20,15,17,10,14,14,10,15,16,13,13,17,15,11,14,8,11,9,9,17,11,16,11,11,7,15,6,12,5,5,5,10,5,7,7,4,8,5,5,6,5,5,6,7,5,5,7,6,8,5,5,5,7,2,2,1,4,1,4,4,4,2,4,2,4,6,4,4,5,9,4,1,2,2,1,0,1,5,2,3,4,4,3,3,1,0,1,2,3,2,4,1,3,1,2,3,3,4,1,2,1,3,2,0,1,2,1,1,3,1,3,1,2,2,3,1,2,0,4,1,1,1,0,1,1,1,0,1,1,0,3,1,0,1,2,0,1,0,2,0,0,1,0,2,1,0,1,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,1,2,0,0,2,0,0,1,0,0,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]}],                        {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}},                        {"responsive": true}                    ).then(function(){

var gd = document.getElementById('69fd8db0-ad05-4a8f-b29a-74d01faccda8');
var x = new MutationObserver(function (mutations, observer) {{
        var display = window.getComputedStyle(gd).display;
        if (!display || display === 'none') {{
            console.log([gd, 'removed!']);
            Plotly.purge(gd);
            observer.disconnect();
        }}
}});

// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
    x.observe(notebookContainer, {childList: true});
}}

// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
    x.observe(outputEl, {childList: true});
}}

                        })                };                });            </script>        </div>



```python
text_length("sst2", query="predicted:ok").visualize()
```


<div>                            <div id="74d4b898-a8ff-4acd-baac-4ba913de0ec8" class="plotly-graph-div" style="height:525px; width:100%;"></div>            <script type="text/javascript">                require(["plotly"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById("74d4b898-a8ff-4acd-baac-4ba913de0ec8")) {                    Plotly.newPlot(                        "74d4b898-a8ff-4acd-baac-4ba913de0ec8",                        [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[3,10,80,247,413,590,722,917,1053,1054,1092,1106,1188,1173,1243,1202,1255,1274,1239,1303,1208,1188,1137,1052,1031,984,965,921,904,875,834,808,857,736,811,721,723,714,652,650,612,652,606,612,603,546,550,554,472,536,506,490,473,480,526,471,434,423,389,434,417,403,401,380,381,371,391,353,341,328,340,339,334,291,310,325,296,292,313,290,308,297,257,279,295,265,258,270,239,250,243,247,246,215,220,237,203,199,219,204,209,212,201,197,189,184,185,181,178,183,178,182,157,159,143,153,143,155,146,147,138,142,139,136,143,144,116,137,107,126,105,108,115,101,122,97,87,97,91,101,90,83,82,89,95,87,100,70,81,74,81,68,78,73,72,75,68,60,61,55,66,76,53,55,58,58,54,46,48,51,56,61,51,40,47,32,35,46,35,34,45,37,27,30,36,25,34,30,30,26,32,24,27,17,16,18,21,17,9,18,15,20,21,20,18,16,15,18,14,21,14,17,18,16,15,10,13,9,14,6,14,4,10,9,6,6,7,11,7,7,4,8,8,6,6,5,4,4,6,4,5,1,1,6,4,5,5,7,4,6,8,3,1,6,2,3,2,5,4,4,1,0,0,0,0,0,1]}],                        {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}},                        {"responsive": true}                    ).then(function(){

var gd = document.getElementById('74d4b898-a8ff-4acd-baac-4ba913de0ec8');
var x = new MutationObserver(function (mutations, observer) {{
        var display = window.getComputedStyle(gd).display;
        if (!display || display === 'none') {{
            console.log([gd, 'removed!']);
            Plotly.purge(gd);
            observer.disconnect();
        }}
}});

// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
    x.observe(notebookContainer, {childList: true});
}}

// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
    x.observe(outputEl, {childList: true});
}}

                        })                };                });            </script>        </div>



```python
text_length("sst2").visualize()
```


<div>                            <div id="6c039f9e-bc30-4e48-92d6-99d7b24347f9" class="plotly-graph-div" style="height:525px; width:100%;"></div>            <script type="text/javascript">                require(["plotly"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById("6c039f9e-bc30-4e48-92d6-99d7b24347f9")) {                    Plotly.newPlot(                        "6c039f9e-bc30-4e48-92d6-99d7b24347f9",                        [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[3,10,80,256,416,595,731,928,1070,1074,1107,1123,1198,1187,1257,1212,1270,1290,1252,1316,1225,1203,1148,1066,1039,995,974,930,921,886,850,819,868,743,826,727,735,719,657,655,622,657,613,619,607,554,555,559,478,541,511,496,480,485,531,478,440,431,394,439,422,410,403,382,382,375,392,357,345,332,342,343,336,295,316,329,300,297,322,294,309,299,259,280,295,266,263,272,242,254,247,250,249,216,220,238,205,202,221,208,210,215,202,199,192,187,189,182,180,184,181,184,157,160,145,154,144,158,147,150,139,144,141,139,144,146,116,141,108,127,106,108,116,102,123,97,88,98,91,104,91,83,83,91,95,88,100,72,81,74,82,68,80,74,72,76,68,61,62,55,66,77,53,55,59,59,54,47,49,52,56,61,51,40,48,34,35,46,37,34,45,38,27,30,37,26,34,31,30,26,33,24,27,17,17,18,21,18,9,18,15,20,21,20,18,17,15,18,14,21,15,17,18,16,15,11,13,9,14,6,14,4,10,9,6,6,8,11,7,8,4,8,8,6,6,5,4,4,6,4,5,1,1,6,5,5,5,7,4,6,8,3,1,6,2,3,2,5,4,4,1,0,0,0,0,0,1]}],                        {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}},                        {"responsive": true}                    ).then(function(){

var gd = document.getElementById('6c039f9e-bc30-4e48-92d6-99d7b24347f9');
var x = new MutationObserver(function (mutations, observer) {{
        var display = window.getComputedStyle(gd).display;
        if (!display || display === 'none') {{
            console.log([gd, 'removed!']);
            Plotly.purge(gd);
            observer.disconnect();
        }}
}});

// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
    x.observe(notebookContainer, {childList: true});
}}

// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
    x.observe(outputEl, {childList: true});
}}

                        })                };                });            </script>        </div>



```python
text_length("sst2", query="predicted_as:negative").visualize()
```


<div>                            <div id="d6bffdcd-d607-4241-9a03-2d1ff9b19461" class="plotly-graph-div" style="height:525px; width:100%;"></div>            <script type="text/javascript">                require(["plotly"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById("d6bffdcd-d607-4241-9a03-2d1ff9b19461")) {                    Plotly.newPlot(                        "d6bffdcd-d607-4241-9a03-2d1ff9b19461",                        [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0],"y":[2,3,36,134,213,304,335,416,483,448,490,428,485,487,522,478,497,498,490,513,457,469,474,419,431,407,381,409,385,376,337,339,371,316,366,319,307,325,299,275,279,301,298,277,290,251,239,280,220,261,239,233,236,223,271,251,197,226,180,207,198,190,197,192,174,172,184,175,171,155,175,157,174,145,152,152,147,129,155,151,148,145,119,149,150,124,123,138,104,127,123,111,135,111,90,126,107,93,98,94,89,112,95,94,90,88,89,79,94,91,91,84,67,75,65,75,74,75,74,64,60,78,59,62,63,72,52,63,52,60,49,52,57,50,54,44,36,54,41,49,50,40,43,51,57,45,45,35,41,38,37,35,38,39,31,40,30,24,34,18,26,36,26,30,34,29,25,21,23,20,24,30,28,14,29,14,20,19,16,12,22,14,15,7,20,8,20,15,12,12,8,11,12,8,9,11,9,10,3,8,7,7,10,9,4,9,5,7,4,7,9,8,8,8,8,7,1,1,4,2,6,2,5,2,2,3,4,2,3,3,0,3,3,3,3,2,1,1,1,2,2,0,0,1,3,1,5,3,2,4,4,1,0,2,0,0,1,3,0,1]}],                        {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}},                        {"responsive": true}                    ).then(function(){

var gd = document.getElementById('d6bffdcd-d607-4241-9a03-2d1ff9b19461');
var x = new MutationObserver(function (mutations, observer) {{
        var display = window.getComputedStyle(gd).display;
        if (!display || display === 'none') {{
            console.log([gd, 'removed!']);
            Plotly.purge(gd);
            observer.disconnect();
        }}
}});

// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
    x.observe(notebookContainer, {childList: true});
}}

// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
    x.observe(outputEl, {childList: true});
}}

                        })                };                });            </script>        </div>



```python
text_length("sst2", query="predicted_as:positive").visualize()
```


<div>                            <div id="7967280f-41e1-4c3c-9655-6595fc09867e" class="plotly-graph-div" style="height:525px; width:100%;"></div>            <script type="text/javascript">                require(["plotly"], function(Plotly) {                    window.PLOTLYENV=window.PLOTLYENV || {};                                    if (document.getElementById("7967280f-41e1-4c3c-9655-6595fc09867e")) {                    Plotly.newPlot(                        "7967280f-41e1-4c3c-9655-6595fc09867e",                        [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[1,7,44,122,203,291,396,512,587,626,617,695,713,700,735,734,773,792,762,803,768,734,674,647,608,588,593,521,536,510,513,480,497,427,460,408,428,394,358,380,343,356,315,342,317,303,316,279,258,280,272,263,244,262,260,227,243,205,214,232,224,220,206,190,208,203,208,182,174,177,167,186,162,150,164,177,153,168,167,143,161,154,140,131,145,142,140,134,138,127,124,139,114,105,130,112,98,109,123,114,121,103,107,105,102,99,100,103,86,93,90,100,90,85,80,79,70,83,73,86,79,66,82,77,81,74,64,78,56,67,57,56,59,52,69,53,52,44,50,55,41,43,40,40,38,43,55,37,40,36,45,33,42,35,41,36,38,37,28,37,40,41,27,25,25,30,29,26,26,32,32,31,23,26,19,20,15,27,21,22,23,24,12,23,17,18,14,16,18,14,25,13,15,9,8,7,12,8,6,10,8,13,11,11,14,8,10,11,10,14,6,9,10,8,7,4,12,8,10,4,8,2,5,7,4,3,4,9,4,5,4,5,5,3,3,3,3,3,5,2,3,1,1,5,2,4,0,4,2,2,4,2,1,4,2,3,1,2,4,3,1,0,0,0,0,0,1]}],                        {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}},                        {"responsive": true}                    ).then(function(){

var gd = document.getElementById('7967280f-41e1-4c3c-9655-6595fc09867e');
var x = new MutationObserver(function (mutations, observer) {{
        var display = window.getComputedStyle(gd).display;
        if (!display || display === 'none') {{
            console.log([gd, 'removed!']);
            Plotly.purge(gd);
            observer.disconnect();
        }}
}});

// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
    x.observe(notebookContainer, {childList: true});
}}

// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
    x.observe(outputEl, {childList: true});
}}

                        })                };                });            </script>        </div>