File size: 76,345 Bytes
7167911 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
# Comparing model predictions and ground truth labels with Rubrix and Hugging Face
## Build dataset
You skip this step if you run:
```python
from datasets import load_dataset
import rubrix as rb
ds = rb.DatasetForTextClassification.from_datasets(load_dataset("rubrix/sst2_with_predictions", split="train"))
```
Otherwise, the following cell will run the pipeline over the training set and store labels and predictions.
```python
from datasets import load_dataset
from transformers import pipeline, AutoModelForSequenceClassification
import rubrix as rb
name = "distilbert-base-uncased-finetuned-sst-2-english"
# Need to define id2label because surprisingly the pipeline has uppercase label names
model = AutoModelForSequenceClassification.from_pretrained(name, id2label={0: 'negative', 1: 'positive'})
nlp = pipeline("sentiment-analysis", model=model, tokenizer=name, return_all_scores=True)
dataset = load_dataset("glue", "sst2", split="train")
# batch predict
def predict(example):
return {"prediction": nlp(example["sentence"])}
# add predictions to the dataset
dataset = dataset.map(predict, batched=True).rename_column("sentence", "text")
# build rubrix dataset from hf dataset
ds = rb.DatasetForTextClassification.from_datasets(dataset, annotation="label")
```
```python
# Install Rubrix and start exploring and sharing URLs with interesting subsets, etc.
rb.log(ds, "sst2")
```
```python
ds.to_datasets().push_to_hub("rubrix/sst2_with_predictions")
```
Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]
## Analize misspredictions and ambiguous labels
### With the UI
With Rubrix UI you can:
- Combine filters and full-text/DSL queries to quickly find important samples
- All URLs contain the state so you can share with collaborator and annotator specific dataset regions to work on.
- Sort examples by score, as well as custom metadata fields.
![example.png](example.png)
### Programmatically
Let's find all wrong predictions from Python. This useful for bulk operations (relabelling, discarding, etc.)
```python
import pandas as pd
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko").to_pandas()
# display first 20 examples
with pd.option_context('display.max_colwidth', None):
display(df[["text", "prediction", "annotation"]].head(20))
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>text</th>
<th>prediction</th>
<th>annotation</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>this particular , anciently demanding métier</td>
<td>[(negative, 0.9386059045791626), (positive, 0.06139408051967621)]</td>
<td>positive</td>
</tr>
<tr>
<th>1</th>
<td>under our skin</td>
<td>[(positive, 0.7508484721183777), (negative, 0.24915160238742828)]</td>
<td>negative</td>
</tr>
<tr>
<th>2</th>
<td>evokes a palpable sense of disconnection , made all the more poignant by the incessant use of cell phones .</td>
<td>[(negative, 0.6634528636932373), (positive, 0.3365470767021179)]</td>
<td>positive</td>
</tr>
<tr>
<th>3</th>
<td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
<td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
<td>negative</td>
</tr>
<tr>
<th>4</th>
<td>into a pulpy concept that , in many other hands would be completely forgettable</td>
<td>[(positive, 0.6178210377693176), (negative, 0.3821789622306824)]</td>
<td>negative</td>
</tr>
<tr>
<th>5</th>
<td>transcends ethnic lines .</td>
<td>[(positive, 0.9758220314979553), (negative, 0.024177948012948036)]</td>
<td>negative</td>
</tr>
<tr>
<th>6</th>
<td>is barely</td>
<td>[(negative, 0.9922297596931458), (positive, 0.00777028314769268)]</td>
<td>positive</td>
</tr>
<tr>
<th>7</th>
<td>a pulpy concept that , in many other hands would be completely forgettable</td>
<td>[(negative, 0.9738760590553284), (positive, 0.026123959571123123)]</td>
<td>positive</td>
</tr>
<tr>
<th>8</th>
<td>of hollywood heart-string plucking</td>
<td>[(positive, 0.9889695644378662), (negative, 0.011030420660972595)]</td>
<td>negative</td>
</tr>
<tr>
<th>9</th>
<td>a minimalist beauty and the beast</td>
<td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
<td>negative</td>
</tr>
<tr>
<th>10</th>
<td>the intimate , unguarded moments of folks who live in unusual homes --</td>
<td>[(positive, 0.9967381358146667), (negative, 0.0032618637196719646)]</td>
<td>negative</td>
</tr>
<tr>
<th>11</th>
<td>steals the show</td>
<td>[(negative, 0.8031412363052368), (positive, 0.1968587338924408)]</td>
<td>positive</td>
</tr>
<tr>
<th>12</th>
<td>enough</td>
<td>[(positive, 0.7941301465034485), (negative, 0.2058698982000351)]</td>
<td>negative</td>
</tr>
<tr>
<th>13</th>
<td>accept it as life and</td>
<td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
<td>negative</td>
</tr>
<tr>
<th>14</th>
<td>this is the kind of movie that you only need to watch for about thirty seconds before you say to yourself , ` ah , yes ,</td>
<td>[(negative, 0.7889454960823059), (positive, 0.21105451881885529)]</td>
<td>positive</td>
</tr>
<tr>
<th>15</th>
<td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
<td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
<td>negative</td>
</tr>
<tr>
<th>16</th>
<td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
<td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
<td>negative</td>
</tr>
<tr>
<th>17</th>
<td>troubled and determined homicide cop</td>
<td>[(negative, 0.6632784008979797), (positive, 0.33672159910202026)]</td>
<td>positive</td>
</tr>
<tr>
<th>18</th>
<td>human nature is a goofball movie , in the way that malkovich was , but it tries too hard</td>
<td>[(positive, 0.5959018468856812), (negative, 0.40409812331199646)]</td>
<td>negative</td>
</tr>
<tr>
<th>19</th>
<td>to watch too many barney videos</td>
<td>[(negative, 0.9909896850585938), (positive, 0.00901023019105196)]</td>
<td>positive</td>
</tr>
</tbody>
</table>
</div>
```python
df.annotation.hist()
```
<AxesSubplot:>
![png](output_9_1.png)
```python
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko and annotated_as:negative").to_pandas()
# display first 20 examples
with pd.option_context('display.max_colwidth', None):
display(df[["text", "prediction", "annotation"]].head(20))
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>text</th>
<th>prediction</th>
<th>annotation</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
<td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
<td>negative</td>
</tr>
<tr>
<th>1</th>
<td>a minimalist beauty and the beast</td>
<td>[(positive, 0.9100378751754761), (negative, 0.08996208757162094)]</td>
<td>negative</td>
</tr>
<tr>
<th>2</th>
<td>accept it as life and</td>
<td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
<td>negative</td>
</tr>
<tr>
<th>3</th>
<td>plunges you into a reality that is , more often then not , difficult and sad ,</td>
<td>[(positive, 0.967541515827179), (negative, 0.03245845437049866)]</td>
<td>negative</td>
</tr>
<tr>
<th>4</th>
<td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
<td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
<td>negative</td>
</tr>
<tr>
<th>5</th>
<td>and social commentary</td>
<td>[(positive, 0.7863275408744812), (negative, 0.2136724889278412)]</td>
<td>negative</td>
</tr>
<tr>
<th>6</th>
<td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
<td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
<td>negative</td>
</tr>
<tr>
<th>7</th>
<td>before pulling the plug on the conspirators and averting an american-russian armageddon</td>
<td>[(positive, 0.6992855072021484), (negative, 0.30071452260017395)]</td>
<td>negative</td>
</tr>
<tr>
<th>8</th>
<td>in tight pants and big tits</td>
<td>[(positive, 0.7850217819213867), (negative, 0.2149781733751297)]</td>
<td>negative</td>
</tr>
<tr>
<th>9</th>
<td>that it certainly does n't feel like a film that strays past the two and a half mark</td>
<td>[(positive, 0.6591460108757019), (negative, 0.3408539891242981)]</td>
<td>negative</td>
</tr>
<tr>
<th>10</th>
<td>actress-producer and writer</td>
<td>[(positive, 0.8167378306388855), (negative, 0.1832621842622757)]</td>
<td>negative</td>
</tr>
<tr>
<th>11</th>
<td>gives devastating testimony to both people 's capacity for evil and their heroic capacity for good .</td>
<td>[(positive, 0.8960123062133789), (negative, 0.10398765653371811)]</td>
<td>negative</td>
</tr>
<tr>
<th>12</th>
<td>deep into the girls ' confusion and pain as they struggle tragically to comprehend the chasm of knowledge that 's opened between them</td>
<td>[(positive, 0.9729612469673157), (negative, 0.027038726955652237)]</td>
<td>negative</td>
</tr>
<tr>
<th>13</th>
<td>a younger lad in zen and the art of getting laid in this prickly indie comedy of manners and misanthropy</td>
<td>[(positive, 0.9875985980033875), (negative, 0.012401451356709003)]</td>
<td>negative</td>
</tr>
<tr>
<th>14</th>
<td>get on a board and , uh , shred ,</td>
<td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
<td>negative</td>
</tr>
<tr>
<th>15</th>
<td>so preachy-keen and</td>
<td>[(positive, 0.9644021391868591), (negative, 0.035597823560237885)]</td>
<td>negative</td>
</tr>
<tr>
<th>16</th>
<td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
<td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
<td>negative</td>
</tr>
<tr>
<th>17</th>
<td>` christian bale 's quinn ( is ) a leather clad grunge-pirate with a hairdo like gandalf in a wind-tunnel and a simply astounding cor-blimey-luv-a-duck cockney accent . '</td>
<td>[(positive, 0.9713286757469177), (negative, 0.028671346604824066)]</td>
<td>negative</td>
</tr>
<tr>
<th>18</th>
<td>passion , grief and fear</td>
<td>[(positive, 0.9849751591682434), (negative, 0.015024829655885696)]</td>
<td>negative</td>
</tr>
<tr>
<th>19</th>
<td>to keep the extremes of screwball farce and blood-curdling family intensity on one continuum</td>
<td>[(positive, 0.8838250637054443), (negative, 0.11617499589920044)]</td>
<td>negative</td>
</tr>
</tbody>
</table>
</div>
```python
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko and score:{0.99 TO *}").to_pandas()
# display first 20 examples
with pd.option_context('display.max_colwidth', None):
display(df[["text", "prediction", "annotation"]].head(20))
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>text</th>
<th>prediction</th>
<th>annotation</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>plays like a living-room war of the worlds , gaining most of its unsettling force from the suggested and the unknown .</td>
<td>[(positive, 0.9968075752258301), (negative, 0.003192420583218336)]</td>
<td>negative</td>
</tr>
<tr>
<th>1</th>
<td>accept it as life and</td>
<td>[(positive, 0.9987508058547974), (negative, 0.0012492131209000945)]</td>
<td>negative</td>
</tr>
<tr>
<th>2</th>
<td>overcomes the script 's flaws and envelops the audience in his character 's anguish , anger and frustration .</td>
<td>[(positive, 0.9953157901763916), (negative, 0.004684178624302149)]</td>
<td>negative</td>
</tr>
<tr>
<th>3</th>
<td>will no doubt rally to its cause , trotting out threadbare standbys like ` masterpiece ' and ` triumph ' and all that malarkey ,</td>
<td>[(negative, 0.9936562180519104), (positive, 0.006343740504235029)]</td>
<td>positive</td>
</tr>
<tr>
<th>4</th>
<td>we do n't get williams ' usual tear and a smile , just sneers and bile , and the spectacle is nothing short of refreshing .</td>
<td>[(positive, 0.9982783794403076), (negative, 0.0017216014675796032)]</td>
<td>negative</td>
</tr>
<tr>
<th>5</th>
<td>somehow manages to bring together kevin pollak , former wrestler chyna and dolly parton</td>
<td>[(negative, 0.9979034662246704), (positive, 0.002096540294587612)]</td>
<td>positive</td>
</tr>
<tr>
<th>6</th>
<td>there 's an admirable rigor to jimmy 's relentless anger , and to the script 's refusal of a happy ending ,</td>
<td>[(positive, 0.9928517937660217), (negative, 0.007148175034672022)]</td>
<td>negative</td>
</tr>
<tr>
<th>7</th>
<td>the bottom line with nemesis is the same as it has been with all the films in the series : fans will undoubtedly enjoy it , and the uncommitted need n't waste their time on it</td>
<td>[(positive, 0.995850682258606), (negative, 0.004149340093135834)]</td>
<td>negative</td>
</tr>
<tr>
<th>8</th>
<td>is genial but never inspired , and little</td>
<td>[(negative, 0.9921030402183533), (positive, 0.007896988652646542)]</td>
<td>positive</td>
</tr>
<tr>
<th>9</th>
<td>heaped upon a project of such vast proportions need to reap more rewards than spiffy bluescreen technique and stylish weaponry .</td>
<td>[(negative, 0.9958089590072632), (positive, 0.004191054962575436)]</td>
<td>positive</td>
</tr>
<tr>
<th>10</th>
<td>than recommended -- as visually bland as a dentist 's waiting room , complete with soothing muzak and a cushion of predictable narrative rhythms</td>
<td>[(negative, 0.9988711476325989), (positive, 0.0011287889210507274)]</td>
<td>positive</td>
</tr>
<tr>
<th>11</th>
<td>spectacle and</td>
<td>[(positive, 0.9941601753234863), (negative, 0.005839805118739605)]</td>
<td>negative</td>
</tr>
<tr>
<th>12</th>
<td>groan and</td>
<td>[(negative, 0.9987359642982483), (positive, 0.0012639997294172645)]</td>
<td>positive</td>
</tr>
<tr>
<th>13</th>
<td>'re not likely to have seen before , but beneath the exotic surface ( and exotic dancing ) it 's surprisingly old-fashioned .</td>
<td>[(positive, 0.9908103942871094), (negative, 0.009189637377858162)]</td>
<td>negative</td>
</tr>
<tr>
<th>14</th>
<td>its metaphors are opaque enough to avoid didacticism , and</td>
<td>[(negative, 0.990602970123291), (positive, 0.00939704105257988)]</td>
<td>positive</td>
</tr>
<tr>
<th>15</th>
<td>by kevin bray , whose crisp framing , edgy camera work , and wholesale ineptitude with acting , tone and pace very obviously mark him as a video helmer making his feature debut</td>
<td>[(positive, 0.9973387122154236), (negative, 0.0026612314395606518)]</td>
<td>negative</td>
</tr>
<tr>
<th>16</th>
<td>evokes the frustration , the awkwardness and the euphoria of growing up , without relying on the usual tropes .</td>
<td>[(positive, 0.9989104270935059), (negative, 0.0010896018939092755)]</td>
<td>negative</td>
</tr>
<tr>
<th>17</th>
<td>, incoherence and sub-sophomoric</td>
<td>[(negative, 0.9962475895881653), (positive, 0.003752368036657572)]</td>
<td>positive</td>
</tr>
<tr>
<th>18</th>
<td>seems intimidated by both her subject matter and the period trappings of this debut venture into the heritage business .</td>
<td>[(negative, 0.9923072457313538), (positive, 0.007692818529903889)]</td>
<td>positive</td>
</tr>
<tr>
<th>19</th>
<td>despite downplaying her good looks , carries a little too much ai n't - she-cute baggage into her lead role as a troubled and determined homicide cop to quite pull off the heavy stuff .</td>
<td>[(negative, 0.9948075413703918), (positive, 0.005192441400140524)]</td>
<td>positive</td>
</tr>
</tbody>
</table>
</div>
```python
# Get dataset slice with wrong predictions
df = rb.load("sst2", query="predicted:ko and score:{* TO 0.6}").to_pandas()
# display first 20 examples
with pd.option_context('display.max_colwidth', None):
display(df[["text", "prediction", "annotation"]].head(20))
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>text</th>
<th>prediction</th>
<th>annotation</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>get on a board and , uh , shred ,</td>
<td>[(positive, 0.5352609753608704), (negative, 0.46473899483680725)]</td>
<td>negative</td>
</tr>
<tr>
<th>1</th>
<td>is , truly and thankfully , a one-of-a-kind work</td>
<td>[(positive, 0.5819814801216125), (negative, 0.41801854968070984)]</td>
<td>negative</td>
</tr>
<tr>
<th>2</th>
<td>starts as a tart little lemon drop of a movie and</td>
<td>[(negative, 0.5641832947731018), (positive, 0.4358167052268982)]</td>
<td>positive</td>
</tr>
<tr>
<th>3</th>
<td>between flaccid satire and what</td>
<td>[(negative, 0.5532692074775696), (positive, 0.44673076272010803)]</td>
<td>positive</td>
</tr>
<tr>
<th>4</th>
<td>it certainly does n't feel like a film that strays past the two and a half mark</td>
<td>[(negative, 0.5386656522750854), (positive, 0.46133431792259216)]</td>
<td>positive</td>
</tr>
<tr>
<th>5</th>
<td>who liked there 's something about mary and both american pie movies</td>
<td>[(negative, 0.5086333751678467), (positive, 0.4913666248321533)]</td>
<td>positive</td>
</tr>
<tr>
<th>6</th>
<td>many good ideas as bad is the cold comfort that chin 's film serves up with style and empathy</td>
<td>[(positive, 0.557632327079773), (negative, 0.44236767292022705)]</td>
<td>negative</td>
</tr>
<tr>
<th>7</th>
<td>about its ideas and</td>
<td>[(positive, 0.518638551235199), (negative, 0.48136141896247864)]</td>
<td>negative</td>
</tr>
<tr>
<th>8</th>
<td>of a sick and evil woman</td>
<td>[(negative, 0.5554516315460205), (positive, 0.4445483684539795)]</td>
<td>positive</td>
</tr>
<tr>
<th>9</th>
<td>though this rude and crude film does deliver a few gut-busting laughs</td>
<td>[(positive, 0.5045541524887085), (negative, 0.4954459071159363)]</td>
<td>negative</td>
</tr>
<tr>
<th>10</th>
<td>to squeeze the action and our emotions into the all-too-familiar dramatic arc of the holocaust escape story</td>
<td>[(negative, 0.5050069093704224), (positive, 0.49499306082725525)]</td>
<td>positive</td>
</tr>
<tr>
<th>11</th>
<td>that throws a bunch of hot-button items in the viewer 's face and asks to be seen as hip , winking social commentary</td>
<td>[(negative, 0.5873904228210449), (positive, 0.41260960698127747)]</td>
<td>positive</td>
</tr>
<tr>
<th>12</th>
<td>'s soulful and unslick</td>
<td>[(positive, 0.5931627750396729), (negative, 0.40683719515800476)]</td>
<td>negative</td>
</tr>
</tbody>
</table>
</div>
```python
from rubrix.metrics.commons import *
```
```python
text_length("sst2", query="predicted:ko").visualize()
```
<div> <div id="69fd8db0-ad05-4a8f-b29a-74d01faccda8" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("69fd8db0-ad05-4a8f-b29a-74d01faccda8")) { Plotly.newPlot( "69fd8db0-ad05-4a8f-b29a-74d01faccda8", [{"type":"bar","x":[5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0],"y":[9,3,5,9,11,17,20,15,17,10,14,14,10,15,16,13,13,17,15,11,14,8,11,9,9,17,11,16,11,11,7,15,6,12,5,5,5,10,5,7,7,4,8,5,5,6,5,5,6,7,5,5,7,6,8,5,5,5,7,2,2,1,4,1,4,4,4,2,4,2,4,6,4,4,5,9,4,1,2,2,1,0,1,5,2,3,4,4,3,3,1,0,1,2,3,2,4,1,3,1,2,3,3,4,1,2,1,3,2,0,1,2,1,1,3,1,3,1,2,2,3,1,2,0,4,1,1,1,0,1,1,1,0,1,1,0,3,1,0,1,2,0,1,0,2,0,0,1,0,2,1,0,1,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,1,2,0,0,2,0,0,1,0,0,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('69fd8db0-ad05-4a8f-b29a-74d01faccda8');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; }); </script> </div>
```python
text_length("sst2", query="predicted:ok").visualize()
```
<div> <div id="74d4b898-a8ff-4acd-baac-4ba913de0ec8" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("74d4b898-a8ff-4acd-baac-4ba913de0ec8")) { Plotly.newPlot( "74d4b898-a8ff-4acd-baac-4ba913de0ec8", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[3,10,80,247,413,590,722,917,1053,1054,1092,1106,1188,1173,1243,1202,1255,1274,1239,1303,1208,1188,1137,1052,1031,984,965,921,904,875,834,808,857,736,811,721,723,714,652,650,612,652,606,612,603,546,550,554,472,536,506,490,473,480,526,471,434,423,389,434,417,403,401,380,381,371,391,353,341,328,340,339,334,291,310,325,296,292,313,290,308,297,257,279,295,265,258,270,239,250,243,247,246,215,220,237,203,199,219,204,209,212,201,197,189,184,185,181,178,183,178,182,157,159,143,153,143,155,146,147,138,142,139,136,143,144,116,137,107,126,105,108,115,101,122,97,87,97,91,101,90,83,82,89,95,87,100,70,81,74,81,68,78,73,72,75,68,60,61,55,66,76,53,55,58,58,54,46,48,51,56,61,51,40,47,32,35,46,35,34,45,37,27,30,36,25,34,30,30,26,32,24,27,17,16,18,21,17,9,18,15,20,21,20,18,16,15,18,14,21,14,17,18,16,15,10,13,9,14,6,14,4,10,9,6,6,7,11,7,7,4,8,8,6,6,5,4,4,6,4,5,1,1,6,4,5,5,7,4,6,8,3,1,6,2,3,2,5,4,4,1,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('74d4b898-a8ff-4acd-baac-4ba913de0ec8');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; }); </script> </div>
```python
text_length("sst2").visualize()
```
<div> <div id="6c039f9e-bc30-4e48-92d6-99d7b24347f9" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("6c039f9e-bc30-4e48-92d6-99d7b24347f9")) { Plotly.newPlot( "6c039f9e-bc30-4e48-92d6-99d7b24347f9", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[3,10,80,256,416,595,731,928,1070,1074,1107,1123,1198,1187,1257,1212,1270,1290,1252,1316,1225,1203,1148,1066,1039,995,974,930,921,886,850,819,868,743,826,727,735,719,657,655,622,657,613,619,607,554,555,559,478,541,511,496,480,485,531,478,440,431,394,439,422,410,403,382,382,375,392,357,345,332,342,343,336,295,316,329,300,297,322,294,309,299,259,280,295,266,263,272,242,254,247,250,249,216,220,238,205,202,221,208,210,215,202,199,192,187,189,182,180,184,181,184,157,160,145,154,144,158,147,150,139,144,141,139,144,146,116,141,108,127,106,108,116,102,123,97,88,98,91,104,91,83,83,91,95,88,100,72,81,74,82,68,80,74,72,76,68,61,62,55,66,77,53,55,59,59,54,47,49,52,56,61,51,40,48,34,35,46,37,34,45,38,27,30,37,26,34,31,30,26,33,24,27,17,17,18,21,18,9,18,15,20,21,20,18,17,15,18,14,21,15,17,18,16,15,11,13,9,14,6,14,4,10,9,6,6,8,11,7,8,4,8,8,6,6,5,4,4,6,4,5,1,1,6,5,5,5,7,4,6,8,3,1,6,2,3,2,5,4,4,1,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('6c039f9e-bc30-4e48-92d6-99d7b24347f9');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; }); </script> </div>
```python
text_length("sst2", query="predicted_as:negative").visualize()
```
<div> <div id="d6bffdcd-d607-4241-9a03-2d1ff9b19461" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("d6bffdcd-d607-4241-9a03-2d1ff9b19461")) { Plotly.newPlot( "d6bffdcd-d607-4241-9a03-2d1ff9b19461", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0],"y":[2,3,36,134,213,304,335,416,483,448,490,428,485,487,522,478,497,498,490,513,457,469,474,419,431,407,381,409,385,376,337,339,371,316,366,319,307,325,299,275,279,301,298,277,290,251,239,280,220,261,239,233,236,223,271,251,197,226,180,207,198,190,197,192,174,172,184,175,171,155,175,157,174,145,152,152,147,129,155,151,148,145,119,149,150,124,123,138,104,127,123,111,135,111,90,126,107,93,98,94,89,112,95,94,90,88,89,79,94,91,91,84,67,75,65,75,74,75,74,64,60,78,59,62,63,72,52,63,52,60,49,52,57,50,54,44,36,54,41,49,50,40,43,51,57,45,45,35,41,38,37,35,38,39,31,40,30,24,34,18,26,36,26,30,34,29,25,21,23,20,24,30,28,14,29,14,20,19,16,12,22,14,15,7,20,8,20,15,12,12,8,11,12,8,9,11,9,10,3,8,7,7,10,9,4,9,5,7,4,7,9,8,8,8,8,7,1,1,4,2,6,2,5,2,2,3,4,2,3,3,0,3,3,3,3,2,1,1,1,2,2,0,0,1,3,1,5,3,2,4,4,1,0,2,0,0,1,3,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('d6bffdcd-d607-4241-9a03-2d1ff9b19461');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; }); </script> </div>
```python
text_length("sst2", query="predicted_as:positive").visualize()
```
<div> <div id="7967280f-41e1-4c3c-9655-6595fc09867e" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> require(["plotly"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("7967280f-41e1-4c3c-9655-6595fc09867e")) { Plotly.newPlot( "7967280f-41e1-4c3c-9655-6595fc09867e", [{"type":"bar","x":[2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,263.0,264.0,265.0,266.0,267.0,268.0],"y":[1,7,44,122,203,291,396,512,587,626,617,695,713,700,735,734,773,792,762,803,768,734,674,647,608,588,593,521,536,510,513,480,497,427,460,408,428,394,358,380,343,356,315,342,317,303,316,279,258,280,272,263,244,262,260,227,243,205,214,232,224,220,206,190,208,203,208,182,174,177,167,186,162,150,164,177,153,168,167,143,161,154,140,131,145,142,140,134,138,127,124,139,114,105,130,112,98,109,123,114,121,103,107,105,102,99,100,103,86,93,90,100,90,85,80,79,70,83,73,86,79,66,82,77,81,74,64,78,56,67,57,56,59,52,69,53,52,44,50,55,41,43,40,40,38,43,55,37,40,36,45,33,42,35,41,36,38,37,28,37,40,41,27,25,25,30,29,26,26,32,32,31,23,26,19,20,15,27,21,22,23,24,12,23,17,18,14,16,18,14,25,13,15,9,8,7,12,8,6,10,8,13,11,11,14,8,10,11,10,14,6,9,10,8,7,4,12,8,10,4,8,2,5,7,4,3,4,9,4,5,4,5,5,3,3,3,3,3,5,2,3,1,1,5,2,4,0,4,2,2,4,2,1,4,2,3,1,2,4,3,1,0,0,0,0,0,1]}], {"template":{"data":{"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"choropleth":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmap"}],"heatmapgl":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"heatmapgl"}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":[{"automargin":true,"type":"pie"}],"scatter":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter"}],"scatter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermapbox":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterternary":[{"marker":{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers":"strict","coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlakes":true,"showland":true,"subunitcolor":"white"},"hoverlabel":{"align":"left"},"hovermode":"closest","mapbox":{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"title":{"x":0.05},"xaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":{"text":"Computes the input text length distribution"},"xaxis":{"title":{"text":""}},"yaxis":{"title":{"text":""}}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('7967280f-41e1-4c3c-9655-6595fc09867e');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; }); </script> </div>
|